Advertisement

Electrical resistivity and Hall effect in binary neutron star mergers

  • Arus Harutyunyan
  • Antonios Nathanail
  • Luciano Rezzolla
  • Armen SedrakianEmail author
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physics

Abstract.

We examine the range of rest-mass densities, temperatures and magnetic fields involved in simulations of binary neutron star mergers and identify the conditions under which the ideal-magnetohydrodynamics approximation breaks down and hence the magnetic-field decay should be accounted for. We use recent calculations of the conductivities of warm correlated plasma in envelopes of compact stars and find that the magnetic-field decay timescales are much larger than the characteristic timescales of the merger process for lengthscales down to a meter. Because these are smaller than the currently available resolution in numerical simulations, the ideal-magnetohydrodynamics approximation is effectively valid for all realistic simulations. At the same time, we find that the Hall effect can be important at low densities and low temperatures, where it can induce a non-dissipative rearrangement of the magnetic field. Finally, we mark the region in temperature and density where the hydrodynamic description breaks down.

References

  1. 1.
    LIGO Scientific Collaboration, Virgo Collaboration, Phys. Rev. Lett. 119, 161101 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    LIGO Scientific Collaboration, Virgo Collaboration, Astrophys. J. Lett. 848, L13 (2017) arXiv:1710.05834ADSCrossRefGoogle Scholar
  3. 3.
    LIGO Scientific Collaboration, Virgo Collaboration (B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese et al.), Astrophys. J. Lett. 848, L12 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams et al., Astrophys. J. Lett. 850, L39 (2017) arXiv:1710.05836ADSCrossRefGoogle Scholar
  5. 5.
    D.A. Coulter, R.J. Foley, C.D. Kilpatrick, M.R. Drout, A.L. Piro, B.J. Shappee et al., Science 358, 1556 (2017) arXiv:1710.05452ADSCrossRefGoogle Scholar
  6. 6.
    S. Smartt, T. Chen et al., Nature 551, 75 (2017) arXiv:1710.05841ADSGoogle Scholar
  7. 7.
    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams et al., Nature 551, 85 (2017) arXiv:1710.05835ADSCrossRefGoogle Scholar
  8. 8.
    J.A. Faber, F.A. Rasio, Living Rev. Relativ. 15, 8 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    V. Paschalidis, Class. Quantum Grav. 34, 084002 (2017) arXiv:1611.01519ADSCrossRefGoogle Scholar
  10. 10.
    L. Baiotti, L. Rezzolla, Rep. Prog. Phys. 80, 096901 (2017) arXiv:1607.03540ADSCrossRefGoogle Scholar
  11. 11.
    L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, M.A. Aloy, Astrophys. J. Lett. 732, L6 (2011) arXiv:1101.4298ADSCrossRefGoogle Scholar
  12. 12.
    K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, T. Wada, Phys. Rev. D 90, 041502 (2014) arXiv:1407.2660ADSCrossRefGoogle Scholar
  13. 13.
    C. Palenzuela, S.L. Liebling, D. Neilsen, L. Lehner, O.L. Caballero, E. O’Connor et al., Phys. Rev. D 92, 044045 (2015) arXiv:1505.01607ADSCrossRefGoogle Scholar
  14. 14.
    T. Kawamura, B. Giacomazzo, W. Kastaun, R. Ciolfi, A. Endrizzi, L. Baiotti et al., Phys. Rev. D 94, 064012 (2016) arXiv:1607.01791ADSCrossRefGoogle Scholar
  15. 15.
    M. Ruiz, R.N. Lang, V. Paschalidis, S.L. Shapiro, Astrophys. J. Lett. 824, L6 (2016) arXiv:1604.02455ADSCrossRefGoogle Scholar
  16. 16.
    K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, Global simulations of strongly magnetized remnant massive neutron stars formed in binary neutron star mergers, arXiv:1710.01311 (2017)Google Scholar
  17. 17.
    M. Ruiz, S.L. Shapiro, A. Tsokaros, Phys. Rev. D 97, 021501 (2018) arXiv:1711.00473ADSCrossRefGoogle Scholar
  18. 18.
    K. Dionysopoulou, D. Alic, C. Palenzuela, L. Rezzolla, B. Giacomazzo, Phys. Rev. D 88, 044020 (2013) arXiv:1208.3487ADSCrossRefGoogle Scholar
  19. 19.
    C. Palenzuela, L. Lehner, S.L. Liebling, M. Ponce, M. Anderson, D. Neilsen et al., Phys. Rev. D 88, 043011 (2013) arXiv:1307.7372ADSCrossRefGoogle Scholar
  20. 20.
    C. Palenzuela, L. Lehner, M. Ponce, S.L. Liebling, M. Anderson, D. Neilsen et al., Phys. Rev. Lett. 111, 061105 (2013) arXiv:1301.7074ADSCrossRefGoogle Scholar
  21. 21.
    K. Dionysopoulou, D. Alic, L. Rezzolla, Phys. Rev. D 92, 084064 (2015) arXiv:1502.02021ADSCrossRefGoogle Scholar
  22. 22.
    A. Harutyunyan, A. Sedrakian, Phys. Rev. C 94, 025805 (2016) arXiv:1605.07612ADSCrossRefGoogle Scholar
  23. 23.
    K.N. Gourgouliatos, R. Hollerbach, Mon. Not. R. Astron. Soc. 463, 3381 (2016) arXiv:1607.07874ADSCrossRefGoogle Scholar
  24. 24.
    L.L. Kitchatinov, Astron. Lett. 43, 624 (2017) arXiv:1705.10077ADSCrossRefGoogle Scholar
  25. 25.
    M.G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, K. Schwenzer, Phys. Rev. Lett. 120, 041101 (2018) arXiv:1707.09475ADSCrossRefGoogle Scholar
  26. 26.
    F. Rasio, S. Shapiro, Class. Quantum Grav. 16, R1 (1999) arXiv:gr-qc/9902019ADSCrossRefGoogle Scholar
  27. 27.
    E.P. Velikhov, Sov. Phys. JETP 9, 995 (1959)MathSciNetGoogle Scholar
  28. 28.
    S. Chandrasekhar, Proc. Natl. Acad. Sci. 46, 253 (1960)ADSCrossRefGoogle Scholar
  29. 29.
    M. Anderson, E.W. Hirschmann, L. Lehner, S.L. Liebling, P.M. Motl, D. Neilsen et al., Phys. Rev. Lett. 100, 191101 (2008) arXiv:0801.4387ADSCrossRefGoogle Scholar
  30. 30.
    Y.T. Liu, S.L. Shapiro, Z.B. Etienne, K. Taniguchi, Phys. Rev. D 78, 024012 (2008) arXiv:0803.4193ADSCrossRefGoogle Scholar
  31. 31.
    B. Giacomazzo, L. Rezzolla, L. Baiotti, Mon. Not. R. Astron. Soc. 399, L164 (2009) arXiv:0901.2722ADSCrossRefGoogle Scholar
  32. 32.
    K. Kiuchi, Y. Sekiguchi, M. Shibata, K. Taniguchi, Phys. Rev. D 80, 064037 (2009) arXiv:0904.4551ADSCrossRefGoogle Scholar
  33. 33.
    B. Giacomazzo, L. Rezzolla, L. Baiotti, Phys. Rev. D 83, 044014 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    K. Kiuchi, P. Cerdá-Durán, K. Kyutoku, Y. Sekiguchi, M. Shibata, Phys. Rev. D 92, 124034 (2015) arXiv:1509.09205ADSCrossRefGoogle Scholar
  35. 35.
    D.M. Siegel, R. Ciolfi, A.I. Harte, L. Rezzolla, Phys. Rev. D 87, 121302(R) (2013) arXiv:1302.4368ADSCrossRefGoogle Scholar
  36. 36.
    T. Rembiasz, J. Guilet, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy, E. Müller, Mon. Not. R. Astron. Soc. 460, 3316 (2016) arXiv:1603.00466ADSCrossRefGoogle Scholar
  37. 37.
    M. Obergaulinger, M.A. Aloy, E. Müller, Astron. Astrophys. 515, A30 (2010) arXiv:1003.6031ADSCrossRefGoogle Scholar
  38. 38.
    J. Zrake, A.I. MacFadyen, Astrophys. J. 763, L12 (2013) arXiv:1210.4066ADSCrossRefGoogle Scholar
  39. 39.
    K. Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata, K. Taniguchi, T. Wada, Phys. Rev. D 92, 064034 (2015) arXiv:1506.06811ADSCrossRefGoogle Scholar
  40. 40.
    Z.B. Etienne, V. Paschalidis, R. Haas, P. Mösta, S.L. Shapiro, Class. Quantum Grav. 32, 175009 (2015) arXiv:1501.07276ADSCrossRefGoogle Scholar
  41. 41.
    C.J. Horowitz, D.K. Berry, C.M. Briggs, M.E. Caplan, A. Cumming, A.S. Schneider, Phys. Rev. Lett. 114, 031102 (2015) arXiv:1410.2197ADSCrossRefGoogle Scholar
  42. 42.
    N. Itoh, S. Uchida, Y. Sakamoto, Y. Kohyama, S. Nozawa, Astrophys. J. 677, 495 (2008) arXiv:0708.2967ADSCrossRefGoogle Scholar
  43. 43.
    A.Y. Potekhin, Astron. Astrophys. 351, 787 (1999) arXiv:astro-ph/9909100ADSGoogle Scholar
  44. 44.
    D.A. Baiko, A.D. Kaminker, A.Y. Potekhin, D.G. Yakovlev, Phys. Rev. Lett. 81, 5556 (1998) arXiv:physics/9811052ADSCrossRefGoogle Scholar
  45. 45.
    N. Itoh, H. Hayashi, Y. Kohyama, Astrophys. J. 418, 405 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    N. Itoh, Y. Kohyama, Astrophys. J. 404, 268 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    N. Itoh, Y. Kohyama, N. Matsumoto, M. Seki, Astrophys. J. 285, 758 (1984)ADSCrossRefGoogle Scholar
  48. 48.
    R. Nandkumar, C.J. Pethick, Mon. Not. R. Astron. Soc. 209, 511 (1984)ADSCrossRefGoogle Scholar
  49. 49.
    S. Mitake, S. Ichimaru, N. Itoh, Astrophys. J. 277, 375 (1984)ADSCrossRefGoogle Scholar
  50. 50.
    N. Itoh, S. Mitake, H. Iyetomi, S. Ichimaru, Astrophys. J. 273, 774 (1983)ADSCrossRefGoogle Scholar
  51. 51.
    A. Schmitt, P. Shternin, Reaction rates and transport in neutron stars, arXiv:1711.06520 (2017)Google Scholar
  52. 52.
    M. Hanauske, K. Takami, L. Bovard, L. Rezzolla, J.A. Font, F. Galeazzi et al., Phys. Rev. D 96, 043004 (2017) arXiv:1611.07152ADSCrossRefGoogle Scholar
  53. 53.
    W. Kastaun, R. Ciolfi, A. Endrizzi, B. Giacomazzo, Phys. Rev. D 96, 043019 (2017) arXiv:1612.03671ADSCrossRefGoogle Scholar
  54. 54.
    L. Bovard, D. Martin, F. Guercilena, A. Arcones, L. Rezzolla, O. Korobkin, Phys. Rev. D 96, 124005 (2017) arXiv:1709.09630ADSCrossRefGoogle Scholar
  55. 55.
    W. Kastaun, F. Galeazzi, Phys. Rev. D 91, 064027 (2015) arXiv:1411.7975ADSCrossRefGoogle Scholar
  56. 56.
    A. Harutyunyan, A. Sedrakian, PoS MPCS2015, 011 (2016) arXiv:1607.04541Google Scholar
  57. 57.
    A. Harutyunyan, Relativistic hydrodynamics and transport in strongly correlated systems, PhD Thesis, Goethe University, Franfurt am Main, Germany (2017)Google Scholar
  58. 58.
    L. Rezzolla, O. Zanotti, Relativistic Hydrodynamics (Oxford University Press, Oxford, UK, 2013)Google Scholar
  59. 59.
    A. Bauswein, O. Just, H.-T. Janka, N. Stergioulas, Astrophys. J. Lett. 850, L34 (2017) arXiv:1710.06843ADSCrossRefGoogle Scholar
  60. 60.
    B. Margalit, B.D. Metzger, Astrophys. J. Lett. 850, L19 (2017) arXiv:1710.05938ADSCrossRefGoogle Scholar
  61. 61.
    D. Radice, Astrophys. J. Lett. 838, L2 (2017) arXiv:1703.02046ADSCrossRefGoogle Scholar
  62. 62.
    L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. Lett. 852, L25 (2018) arXiv:1711.00314ADSCrossRefGoogle Scholar
  63. 63.
    M. Ruiz, S.L. Shapiro, A. Tsokaros, Phys. Rev. D 97, 021501 (2018) arXiv:1711.00473ADSCrossRefGoogle Scholar
  64. 64.
    M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi et al., Phys. Rev. D 96, 123012 (2017) arXiv:1710.07579ADSCrossRefGoogle Scholar
  65. 65.
    V. Paschalidis, K. Yagi, D. Alvarez-Castillo, D.B. Blaschke, A. Sedrakian, Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars, arXiv:1712.00451 (2017)Google Scholar
  66. 66.
    E.R. Most, L.R. Weih, L. Rezzolla, J. Schaffner-Bielich, New constraints on radii and tidal deformabilities of neutron stars from GW170817, arXiv:1803.00549 (2018). Google Scholar
  67. 67.
    X.-G. Huang, M. Huang, D.H. Rischke, A. Sedrakian, Phys. Rev. D 81, 045015 (2010) arXiv:0910.3633ADSCrossRefGoogle Scholar
  68. 68.
    X.-G. Huang, A. Sedrakian, D.H. Rischke, Ann. Phys. 326, 3075 (2011) arXiv:1108.0602ADSCrossRefGoogle Scholar
  69. 69.
    J. Hernandez, P. Kovtun, JHEP 05, 1 (2017) arXiv:1703.08757ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Arus Harutyunyan
    • 1
  • Antonios Nathanail
    • 1
  • Luciano Rezzolla
    • 1
    • 2
  • Armen Sedrakian
    • 2
    • 1
    Email author
  1. 1.Institute for Theoretical PhysicsJ. W. Goethe-UniversityFrankfurt am MainGermany
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany

Personalised recommendations