Vortex-like solutions and internal structures of covariant ideal magnetohydrodynamics

  • Wojciech Florkowski
  • Avdhesh Kumar
  • Radoslaw RyblewskiEmail author
Open Access
Regular Article - Theoretical Physics


We discuss a manifestly covariant formulation of ideal relativistic magnetohydrodynamics, which has been recently used in astrophysical and heavy-ion contexts, and compare it to other similar frameworks. We show that the covariant equations allow for stationary vortex-like solutions that represent generalizations of the perfect-fluid solutions describing systems in global equilibrium with rotation. Such solutions are further used to demonstrate that inhomogeneous Maxwell equations, implicitly included in the covariant framework, may generate very large electric charge densities. This suggests that solutions of the covariant formulation may violate in some cases the assumptions of standard ideal magnetohydrodynamics. Furthermore, we show that the flow four-vector and conserved currents obtained in the covariant approach are usually not related to each other, which hinders kinetic-theory interpretation of the obtained results.


  1. 1.
    S. Pu, V. Roy, L. Rezzolla, D.H. Rischke, Phys. Rev. D 93, 074022 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    M. Gedalin, Phys. Fluids B: Plasma Phys. 3, 1871 (1991)CrossRefGoogle Scholar
  3. 3.
    M. Gedalin, Phys. Rev. E 47, 4354 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    M. Gedalin, I. Oiberman, Phys. Rev. E 51, 4901 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    M. Gedalin, Phys. Rev. Lett. 76, 3340 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    W. Florkowski, R. Ryblewski, Acta Phys. Pol. B 40, 2843 (2009)ADSGoogle Scholar
  7. 7.
    V. Roy, S. Pu, L. Rezzolla, D. Rischke, Phys. Lett. B 750, 45 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    G. Inghirami, L. Del Zanna, A. Beraudo, M.H. Moghaddam, F. Becattini, M. Bleicher, Eur. Phys. J. C 76, 659 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    L.-G. Pang, G. Endrodi, H. Petersen, Phys. Rev. C 93, 044919 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    A. Das, S.S. Dave, P.S. Saumia, A.M. Srivastava, Phys. Rev. C 96, 034902 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    V. Roy, S. Pu, L. Rezzolla, D.H. Rischke, Phys. Rev. C 96, 054909 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics (W. A. Benjamin, INC, New York, 1967)Google Scholar
  13. 13.
    V. Skokov, A.Yu. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    V. Voronyuk, V.D. Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. Voloshin, Phys. Rev. C 83, 054911 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A. Bzdak, V. Skokov, Phys. Lett. B 710, 171 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. Lett. 104, 212001 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973)Google Scholar
  20. 20.
    F. Becattini, L. Tinti, Ann. Phys. 325, 1566 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    F. Becattini, L. Csernai, D.J. Wang, Phys. Rev. C 88, 034905 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Q. Wang, Nucl. Phys. A 967, 225 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    W. Florkowski, B. Friman, A. Jaiswal, E. Speranza, Relativistic fluid dynamics with spin, arXiv:1705.00587 [nucl-th]Google Scholar
  24. 24.
    W. Israel, Gen. Rel. Gravit. 9, 451 (1978)ADSCrossRefGoogle Scholar
  25. 25.
    W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions (World Scientific, Singapore, 2010)Google Scholar
  26. 26.
    A. Bialas, W. Czyz, Acta Phys. Pol. B 15, 247 (1984)Google Scholar
  27. 27.
    A. Dyrek, W. Florkowski, Acta Phys. Pol. B 15, 653 (1984)Google Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Wojciech Florkowski
    • 1
    • 2
  • Avdhesh Kumar
    • 1
  • Radoslaw Ryblewski
    • 1
    Email author
  1. 1.Institute of Nuclear Physics Polish Academy of SciencesKrakowPoland
  2. 2.Jan Kochanowski UniversityKielcePoland

Personalised recommendations