Advertisement

Heavy quark fragmentation function in the noncommutative Standard Model

  • S. Mohammad Moosavi NejadEmail author
  • Effat Tajik
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract.

The dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. The hadronization processes are described by the fragmentation functions (FFs) which are universal and process-independent functions. In this paper, we study for the first time the noncommutative effects to the FF of a heavy quark to fragment into heavy mesons to leading order in the QCD coupling constant. As an example, we focus on the FF of a charm quark to split into the S-wave D-meson and compare our analytical results with both the experimental data and a well-known phenomenological model. Here, we compute the corrections of FFs induced by noncommutativity and find a bound on the energy scale where the noncommutative effects of the space-time will be relevant.

References

  1. 1.
    E. Braaten, M.A. Doncheski, S. Fleming, M.L. Mangano, Phys. Lett. B 333, 548 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    M. Suzuki, Phys. Lett. B 71, 139 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    S.M.M. Nejad, M. Delpasand, Int. J. Mod. Phys. A 30, 1550179 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    H. Khanpour, S.T. Monfared, S. Atashbar Tehrani, Phys. Rev. D 96, 074037 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    S.M. Moosavi Nejad, H. Khanpour, S. Atashbar Tehrani, M. Mahdavi, Phys. Rev. C 94, 045201 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    H. Khanpour, S.T. Monfared, S. Atashbar Tehrani, Phys. Rev. D 95, 074006 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    M. Goharipour, H. Khanpour, V. Guzey, Eur. Phys. J. C 78, 309 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    M. Hirai, S. Kumano, Prog. Theor. Phys. Suppl. 186, 244 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) Yad. Fiz. 15Google Scholar
  10. 10.
    T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Nucl. Phys. B 799, 34 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M. Soleymaninia, A.N. Khorramian, S.M. Moosavi Nejad, F. Arbabifar, Phys. Rev. D 88, 054019 (2013) 89ADSCrossRefGoogle Scholar
  12. 12.
    Studies on fragmentation functions are listed in https://doi.org/www.pv.infn.it/radici/FFdatabase/
  13. 13.
    S. Albino, B.A. Kniehl, G. Kramer, Nucl. Phys. B 725, 181 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    P. Nason, C. Oleari, Nucl. Phys. B 565, 245 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    M. Cacciari, P. Nason, C. Oleari, JHEP 04, 006 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Collins, Phys. Rev. D 58, 094002 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D 27, 105 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97, 31 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    B.R. Webber, Nucl. Phys. B 238, 492 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Ma, Nucl. Phys. B 506, 329 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    C.-H. Chang, Y.-Q. Chen, Phys. Lett. B 284, 127 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    E. Braaten, K.-m. Cheung, T.C. Yuan, Phys. Rev. D 48, 4230 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    D.M. Scott, Phys. Rev. D 18, 210 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Bjorken, Phys. Rev. D 17, 171 (1978)ADSCrossRefGoogle Scholar
  27. 27.
    F. Amiri, C.-R. Ji, Phys. Lett. B 195, 593 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Rev. D 59, 086004 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    J.D. Lykken, Phys. Rev. D 54, R3693 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    M. Soleymaninia, H. Khanpour, S.M. Moosavi Nejad, Phys. Rev. D 97, 074014 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    M.G. Bowler, Z. Phys. C 11, 169 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    M. Suzuki, Phys. Rev. D 33, 676 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    A.D. Adamov, G.R. Goldstein, Phys. Rev. D 56, 7381 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    S.J. Brodsky, C.-R. Ji, Phys. Rev. Lett. 55, 2257 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    F. Amiri, B.C. Harms, C.-R. Ji, Phys. Rev. D 32, 2982 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    M.R. Douglas, C.M. Hull, JHEP 02, 008 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    N. Mahajan, Phys. Rev. D 68, 095001 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    Z. Rezaei, R. Salehi, arXiv:1804.07688 [hep-ph]Google Scholar
  42. 42.
    S.M. Moosavi Nejad, Phys. Rev. D 88, 094011 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    A. Alboteanu, T. Ohl, R. Ruckl, Phys. Rev. D 74, 096004 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    J. Madore, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 16, 161 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    B. Jurco, P. Schupp, J. Wess, Nucl. Phys. B 604, 148 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    J.L. Hewett, F.J. Petriello, T.G. Rizzo, Phys. Rev. D 64, 075012 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    I. Hinchliffe, N. Kersting, Phys. Rev. D 64, 116007 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu, Phys. Rev. Lett. 86, 2716 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane, T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp, M. Wohlgenannt, Eur. Phys. J. C 42, 483 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    C.E. Carlson, C.D. Carone, R.F. Lebed, Phys. Lett. B 518, 201 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    N. Seiberg, E. Witten, JHEP 09, 032 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    J. Gomis, T. Mehen, Nucl. Phys. B 591, 265 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    Belle Collaboration (R. Seuster et al.), Phys. Rev. D 73, 032002 (2006)CrossRefGoogle Scholar
  56. 56.
    CLEO Collaboration (M. Artuso et al.), Phys. Rev. D 70, 112001 (2004)CrossRefGoogle Scholar
  57. 57.
    M.A. Gomshi Nobary, J. Phys. G 20, 65 (1994)ADSCrossRefGoogle Scholar
  58. 58.
    S.M. Moosavi Nejad, Phys. Rev. D 96, 114021 (2017)ADSCrossRefGoogle Scholar
  59. 59.
    S.M. Moosavi Nejad, M. Delpasand, Eur. Phys. J. A 53, 174 (2017)ADSCrossRefGoogle Scholar
  60. 60.
    S.M. Moosavi Nejad, P. Sartipi Yarahmadi, Eur. Phys. J. A 52, 315 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    S.M. Moosavi Nejad, Eur. Phys. J. Plus 130, 136 (2015)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsYazd UniversityYazdIran
  2. 2.School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations