Advertisement

Scalar and tensor glueballs as gravitons

  • Matteo Rinaldi
  • Vicente Vento
Open Access
Letter
  • 14 Downloads

Abstract.

The bottom-up approach of the AdS/CFT correspondence leads to the study of field equations in an AdS5 background and from their solutions to the determination of the hadronic mass spectrum. We extend the study to the equations of AdS5 gravitons and determine from them the glueball spectrum. We propose an original presentation of the results which facilitates the comparison of the various models with the spectrum obtained by lattice QCD. This comparison allows to draw some phenomenological conclusions.

References

  1. 1.
    H. Fritzsch, M. Gell-Mann, H. Leutwyler, Phys. Lett. B 47, 365 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    H. Fritzsch, P. Minkowski, Phys. Lett. B 56, 69 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    V. Mathieu, N. Kochelev, V. Vento, Int. J. Mod. Phys. E 18, 1 (2009) arXiv:0810.4453 [hep-ph]ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) Adv. Theor. Math. Phys. 2CrossRefGoogle Scholar
  5. 5.
    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) arXiv:hep-th/9802150ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998) arXiv:hep-th/9803131MathSciNetCrossRefGoogle Scholar
  7. 7.
    S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998) arXiv:hep-th/9802109ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    C. Csaki, H. Ooguri, Y. Oz, J. Terning, JHEP 01, 017 (1999) arXiv:hep-th/9806021ADSCrossRefGoogle Scholar
  9. 9.
    N.R. Constable, R.C. Myers, JHEP 10, 037 (1999) arXiv:hep-th/9908175ADSCrossRefGoogle Scholar
  10. 10.
    R.C. Brower, S.D. Mathur, C.I. Tan, Nucl. Phys. B 587, 249 (2000) arXiv:hep-th/0003115ADSCrossRefGoogle Scholar
  11. 11.
    V. Vento, Eur. Phys. J. A 53, 185 (2017) arXiv:1706.06811 [hep-ph]ADSCrossRefGoogle Scholar
  12. 12.
    UKQCD Collaboration (G.S. Bali et al.), Phys. Lett. B 309, 378 (1993) arXiv:hep-lat/9304012ADSCrossRefGoogle Scholar
  13. 13.
    C.J. Morningstar, M.J. Peardon, Phys. Rev. D 60, 034509 (1999) arXiv:hep-lat/9901004ADSCrossRefGoogle Scholar
  14. 14.
    A. Vaccarino, D. Weingarten, Phys. Rev. D 60, 114501 (1999) arXiv:hep-lat/9910007ADSCrossRefGoogle Scholar
  15. 15.
    W.J. Lee, D. Weingarten, Phys. Rev. D 61, 014015 (2000) arXiv:hep-lat/9910008ADSCrossRefGoogle Scholar
  16. 16.
    TXL and T(X)L Collaborations (G.S. Bali et al.), Phys. Rev. D 62, 054503 (2000) arXiv:hep-lat/0003012CrossRefGoogle Scholar
  17. 17.
    UKQCD Collaboration (A. Hart et al.), Phys. Rev. D 65, 034502 (2002) arXiv:hep-lat/0108022Google Scholar
  18. 18.
    B. Lucini, M. Teper, U. Wenger, JHEP 06, 012 (2004) arXiv:hep-lat/0404008ADSCrossRefGoogle Scholar
  19. 19.
    Y. Chen et al., Phys. Rev. D 73, 014516 (2006) arXiv:hep-lat/0510074ADSCrossRefGoogle Scholar
  20. 20.
    E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards, E. Rinaldi, JHEP 10, 170 (2012) arXiv:1208.1858 [hep-lat]ADSCrossRefGoogle Scholar
  21. 21.
    B. Lucini, M. Teper, JHEP 06, 050 (2001) arXiv:hep-lat/0103027ADSCrossRefGoogle Scholar
  22. 22.
    J. Polchinski, M.J. Strassler, arXiv:hep-th/0003136Google Scholar
  23. 23.
    S.J. Brodsky, G.F. de Teramond, Phys. Lett. B 582, 211 (2004) arXiv:hep-th/0310227ADSCrossRefGoogle Scholar
  24. 24.
    J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005) arXiv:hep-ph/0501128ADSCrossRefGoogle Scholar
  25. 25.
    L. Da Rold, A. Pomarol, Nucl. Phys. B 721, 79 (2005) arXiv:hep-ph/0501218ADSCrossRefGoogle Scholar
  26. 26.
    A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006) arXiv:hep-ph/0602229ADSCrossRefGoogle Scholar
  27. 27.
    E. Folco Capossoli, H. Boschi-Filho, Phys. Lett. B 753, 419 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    H. Boschi-Filho, N.R.F. Braga, JHEP 05, 009 (2003) arXiv:hep-th/0212207ADSCrossRefGoogle Scholar
  29. 29.
    H. Boschi-Filho, N.R.F. Braga, H.L. Carrion, Phys. Rev. D 73, 047901 (2006) arXiv:hep-th/0507063ADSCrossRefGoogle Scholar
  30. 30.
    P. Colangelo, F. De Fazio, F. Jugeau, S. Nicotri, Phys. Lett. B 652, 73 (2007) arXiv:hep-ph/0703316ADSCrossRefGoogle Scholar
  31. 31.
    H. Forkel, Phys. Rev. D 78, 025001 (2008) arXiv:0711.1179 [hep-ph]ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    X.F. Li, A. Zhang, Chin. Phys. C 38, 013102 (2014) arXiv:1309.7154 [hep-ph]ADSCrossRefGoogle Scholar
  33. 33.
    D. Li, M. Huang, JHEP 11, 088 (2013) arXiv:1303.6929 [hep-ph]ADSCrossRefGoogle Scholar
  34. 34.
    O. Andreev, V.I. Zakharov, Phys. Rev. D 74, 025023 (2006) arXiv:hep-ph/0604204ADSCrossRefGoogle Scholar
  35. 35.
    C.D. White, Phys. Lett. B 652, 79 (2007) arXiv:hep-ph/0701157ADSCrossRefGoogle Scholar
  36. 36.
    R.C.L. Bruni, E. Folco Capossoli, H. Boschi-Filho, arXiv:1806.05720 [hep-th]Google Scholar
  37. 37.
    S.J. Brodsky, G.F. de Teramond, Phys. Rev. D 77, 056007 (2008) arXiv:0707.3859 [hep-ph]ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Departamento de Física Teórica-IFICUniversidad de Valencia-CSICBurjassot (Valencia)Spain

Personalised recommendations