Advertisement

Ytterbium (\(\gamma\), n) average cross-sections data near to photodisintegration reaction threshold

  • E. Vagena
  • S. Stoulos
Regular Article - Experimental Physics
  • 6 Downloads

Abstract.

The thick foils activation technique has been applied to estimate the average cross-sections of 168,170,176Yb \((\gamma, \mathrm{n})\) reaction near to photodisintegration threshold. The \((\gamma, \mathrm{n})\) cross-sections are derived using the integrated photon flux at any energy range from the reaction threshold to the bremsstrahlung end-point energy. The photon flux is estimated using a calibration photodisintegration set of foils and taking in advance the spectrum linearity at high energies. The p-nuclei 168Yb average cross-section is \( 106 \pm 21\) mb corresponding to \(E_{\mathrm{mean}} = 10\) MeV. The 170Yb average cross section is \( 117 \pm 31\) mb matching \( E_{\mathrm{mean}} = 9\) MeV while the 176Yb one is \( 123 \pm 36\) mb corresponding to \( E_{\mathrm{mean}} = 8\) MeV. The experimental results associate to statistical model simulations performed by the TALYS code. The simulated data of 168Yb ranges 83–139 mb, while 170Yb and 176Yb vary between 89–152 and 84–170mb; which agree with the measurements within uncertainties. The simulated average cross-section of natYb \((\gamma, \mathrm{n})\) reaction is \( 127 \pm 25\) mb corresponding to energy ranges 6.6-14 MeV. The simulation results based on Lorentzian \( \gamma\)-strength considerations with the density level of Fermi gas plus the constant temperature model are closest to the average cross-sections measured.

References

  1. 1.
    K. Vogt, P. Mohr, M. Babilon, W. Bayer et al., Nucl. Phys. A 707, 241 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    P. Mohr, S. Brieger, G. Witucki, M. Maetz, Nucl. Instrum. Methods A 580, 1201 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    C. Nair, M. Erhard, A.R. Junghans, D. Bemmerer et al., Phys. Rev. C 78, 055802 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    T. Rauscher, Phys. Rev. C 81, 045807 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    C. Plaisir, F. Hannachi, F. Gobet, M. Tarisien et al., Eur. Phys. J. A 48, 68 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    T. Rauscher, N. Dauphas, I. Dillmann, C. Frőhlich et al., Rep. Prog. Phys. 76, 066201 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    H. Naik, G.N. Kim, R. Schwengner, K. Kim et al., Eur. Phys. J. A 50, 83 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    T. Yokoyama, M. Nakahara, R. Fukai, in Proceedings of the Japan Geosciences Union Meeting, Japan (2016), https://doi.org/confit.atlas.jp/guide/event/jpgu2016/subject/MTT28-P04/programpage?cryptoId=
  10. 10.
    J.R. De Laeter, Phys. Rev. C 77, 045803 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    G.M. Gurevich, L.E. Lazarena, V.M. Mazur et al., Nucl. Phys. A 351, 257 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    S.A. Karamian, Phys. At. Nucl. 77, 1429 (2014)CrossRefGoogle Scholar
  13. 13.
    A.M. Goryachev, G.N. Zalesnyy, Vopr. Teor. Yad. Fiz. 1976, 42 (1976)Google Scholar
  14. 14.
    V. Emma, S. Lo Nigro, C. Milone, Nucl. Phys. A 257, 438 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.6, A nuclear reaction program, NRG-1755 NG Petten, Netherlands, (2008) https://doi.org/www.talys.eu.
  17. 17.
  18. 18.
    E. Vagena, S. Stoulos, M. Manolopoulou, Nucl. Instrum. Methods A 806, 271 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    E. Vagena, S. Stoulos, Nucl. Phys. A 957, 259 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    E. Vagena, S. Stoulos, Eur. Phys. J. A 53, 85 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    S. Agosteo, A. Foglio-Para, B. Maggioni, V. Sangiust et al., Heath Phys. 68, 27 (1995)CrossRefGoogle Scholar
  22. 22.
    T. Rauscher, Astrophys. J., Suppl. Ser. 201, 26 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    E. Khan, S. Goriely, D. Allard et al., Astropart. Phys. 23, 191 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    R. Capote, M. Herman, P. Oblozinsky et al., Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    R. Bergere, H. Beil, P. Carlos, A. Veyssiere, Nucl. Phys. A 133, 417 (1969)ADSCrossRefGoogle Scholar
  26. 26.
    H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. Veyssiere, Nucl. Phys. A 172, 426 (1971)ADSCrossRefGoogle Scholar
  27. 27.
    P. Carlos, H. Beil, R. Bergere, A. Lepretre et al., Nucl. Phys. A 225, 171 (1974)ADSCrossRefGoogle Scholar
  28. 28.
    D.M. Filipescu, I. Gheorghe, H. Utsunomiya, S. Goriely et al., Phys. Rev. C 90, 064616 (2014)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nuclear Physics Lab., School of PhysicsAristotle University of Thessaloniki (AUTH)ThessalonikiGreece

Personalised recommendations