Advertisement

On hadron deformation: A model independent extraction of EMR from pion photoproduction data

  • L. Markou
  • E. Stiliaris
  • C. N. Papanicolas
Regular Article - Experimental Physics
  • 9 Downloads

Abstract.

The multipole content of pion photoproduction at the \(\Delta^{+}\)(1232) resonance has been extracted from a data set dominated by recent Mainz Microtron (MAMI) precision measurements. The analysis has been carried out in the Athens Model Independent Analysis Scheme (AMIAS), thus eliminating any model bias. The benchmark quantity for nucleon deformation, EMR = E2/M1 = E1+3/2/M1+3/2, was determined to be -2.5±0.4stat+syst, thus reconfirming in a model independent way that the conjecture of baryon deformation is valid. The derived multipole amplitudes provide stringent constraints on QCD simulations and QCD inspired models striving to describe the hadronic structure. They are in good agreement with phenomenological models which explicitly incorporate pionic degrees of freedom and with lattice QCD calculations.

References

  1. 1.
    S.L. Glashow, Physica A 96, 27 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    C.N. Papanicolas, A.M. Bernstein (Editors), Shapes of hadrons (AIP, 2007)Google Scholar
  3. 3.
    C. Alexandrou, C.N. Papanicolas, M. Vanderhaeghen, Rev. Mod. Phys. 84, 1231 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    R. Beck, H.P. Krahn, J. Ahrens et al., Phys. Rev. Lett. 78, 606 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    G. Blanpied, M. Blecher, A. Caracappa et al., Phys. Rev. Lett. 79, 4337 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    V.V. Frolov, G. Adams, A. Ahmidouch et al., Phys. Rev. Lett. 82, 45 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    R. Beck, H. Krahn, J. Ahrens et al., Phys. Rev. C 61, 035204 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    G. Blanpied, M. Blecher, A. Caracappa et al., Phys. Rev. C 64, 025203 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    C. Mertz, C.E. Vellidis, R. Alarcon et al., Phys. Rev. Lett. 86, 2963 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    P. Bartsch, D. Baumann, J. Bermuth et al., Phys. Rev. Lett. 88, 142001 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    The CLAS Collaboration (K. Joo, L.C. Smith, V.D. Burkert et al.), Phys. Rev. Lett. 88, 122001 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Ahrens, S. Altieri, J. Annand et al., Eur. Phys. J. A 21, 323 (2004)CrossRefGoogle Scholar
  13. 13.
    N. Sparveris, R. Alarcon, A. Bernstein et al., Phys. Rev. Lett. 94, 022003 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    R. Beck, Eur. Phys. J. A 28, 173 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M. Kotulla, AIP Conf. Proc. 904, 203 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    D. Dreschsel, L. Tiator, J. Phys. G: Nucl. Part. Phys. 18, 449 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    T. Sato, T.S.H. Lee, Phys. Rev. C 63, 055201 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    S. Kamalov, G.Y. Chen, S.N. Yang et al., Phys. Lett. B 522, 27 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    I. Aznauryan, Phys. Rev. C 67, 015209 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    C. Alexandrou, G. Koutsou, J. Negele et al., Phys. Rev. D 83, 014501 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    N. Isgur, Phys. Rev. D 25, 2394 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    S. Capstick, G. Karl, Phys. Rev. D 41, 2767 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    G. Ramalho, M. Pena, F. Gross, Phys. Rev. D 78, 114017 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Wunderlich, Int. J. Mod. Phys. Conf. Ser. 40, 1660068 (2016)CrossRefGoogle Scholar
  27. 27.
    A.M. Sandorfi, S. Hoblit, H. Kamano et al., J. Phys. G: Nucl. Part. Phys. 38, 053001 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    L. Markou, C.N. Papanicolas, E. Stiliaris, AMIAS analysis of the benchmark data, in preparationGoogle Scholar
  29. 29.
    A.M. Bernstein, C.N. Papanicolas, AIP Conf. Proc. 904, 1 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    R. Arndt, I. Aznauryan, R. Davidson, Multipole analysis of a benchmark data set for pion photoproduction, in NSTAR 2001, Vol. 1 (World Scientific, 2001) pp. 467--492Google Scholar
  31. 31.
    A2 Collaboration (P. Adlarson et al.), Phys. Rev. C 92, 024617 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    A2 Collaboration (S. Schumann, B.P. Otte et al.), Phys. Lett. B 750, 252 (2015)CrossRefGoogle Scholar
  33. 33.
    B.P. Otte, PhD Thesis, University Mainz (2015)Google Scholar
  34. 34.
    A2 Collaboration (J. Annand et al.), Phys. Rev. C 93, 055209 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    E. Stiliaris, C.N. Papanicolas, AIP Conf. Proc. 904, 257 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    C.N. Papanicolas, E. Stiliaris, arXiv:1205.6505 (2012)Google Scholar
  37. 37.
  38. 38.
    H. Dutz, D. Krämer, B. Zucht et al., Nucl. Phys. A 601, 319 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    I. Anthony, J. Kellie, S. Hall et al., Nucl. Instrum. Methods Phys. Res., Sect. A 301, 230 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    S. Hall, G. Miller, R. Beck et al., Nucl. Instrum. Methods Phys. Res., Sect. A 368, 698 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    J. McGeorge, J. Kellie, J. Annand et al., Eur. Phys. J. A 37, 129 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    A. Starostin, B. Nefkens, E. Berger et al., Phys. Rev. C 64, 055205 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    A.R. Gabler, W. Doering, M. Fuchs et al., Nucl. Instrum. Methods Phys. Res., Sect. A 346, 168 (1994)ADSCrossRefGoogle Scholar
  44. 44.
    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    J. Ahrens, S. Altieri, J.R.M. Annand et al., Eur. Phys. J. A 26, 135 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    A. Belyaev, V. Get’man, V. Gorbenko et al., Nucl. Phys. B 213, 201 (1983)ADSCrossRefGoogle Scholar
  47. 47.
    R. Leukel, PhD Thesis, University Mainz (2001)Google Scholar
  48. 48.
    V. Get’man, V. Gorbenko, A.Y. Derkach et al., Nucl. Phys. B 188, 397 (1981)ADSCrossRefGoogle Scholar
  49. 49.
    G. Chew, M. Goldberger, F. Low, Y. Nambu, Phys. Rev. 106, 1345 (1957)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    O. Hanstein, D. Drechsel, L. Tiator, Nucl. Phys. A 632, 561 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    C. Alexandrou, T. Leontiou, C.N. Papanicolas et al., Phys. Rev. D 91, 014506 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    C.N. Papanicolas, L. Koutsantonis, E. Stiliaris, A novel analysis method for emmision tomography, in preparationGoogle Scholar
  53. 53.
    L. Markou, PhD Thesis, The Cyprus Institute (2018), in preparationGoogle Scholar
  54. 54.
    K.M. Watson, Phys. Rev. 95, 228 (1954)ADSCrossRefGoogle Scholar
  55. 55.
    R. Workman, R. Arndt, W. Briscoe et al., Phys. Rev. C 86, 035202 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    A. Omelaenko, Sov. J. Nucl. Phys. 34, 730 (1981)Google Scholar
  57. 57.
    Y. Wunderlich, R. Beck, L. Tiator, Phys. Rev. C 89, 055203 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    R. Davidson, Model dependence of $E2/M1$, in NSTAR 2001 (World Scientific, 2001) pp. 203--206Google Scholar
  59. 59.
    L. Tiator, private communication (2016)Google Scholar
  60. 60.
    R. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences (Wiley, 1993)Google Scholar
  61. 61.
    F.C. Porter, arXiv:0804.0380 (2008)Google Scholar
  62. 62.
    C. Fernández-Ramírez, arXiv:0912.4158 (2009)Google Scholar
  63. 63.
    C. Collicott, PhD Thesis, University Mainz (2015)Google Scholar
  64. 64.
    R. Workman, M. Paris, W. Briscoe et al., Eur. Phys. J. A 47, 143 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007) arXiv:0710.0306ADSCrossRefGoogle Scholar
  66. 66.
    Bonn-Gatchina Partial Wave Analysis, https://pwa.hiskp.uni-bonn.de/
  67. 67.
    CBELSA/TAPS Collaboration (E. Gutz et al.), Eur. Phys. J. A 50, 74 (2014) arXiv:1402.4125CrossRefGoogle Scholar
  68. 68.
    INS Data Analysis Center, http://gwdac.phys.gwu.edu/
  69. 69.
    R. Workman, private communication (2017)Google Scholar
  70. 70.
    Multiparameter Errors in Minuit-UP values, http://www.dnp.fmph.uniba.sk/cernlib/asdoc/minuit/node33 .html, accessed: 2017-07-28
  71. 71.
    F. James, Function Minimization and Error Analysis, Version 94 (1994)Google Scholar
  72. 72.
    C. Fernández-Ramírez, E.M. de Guerra, J. Udías, Phys. Rev. C 73, 042201 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    V. Pascalutsa, J.A. Tjon, Phys. Rev. C 70, 035209 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    S.S. Kamalov, S.N. Yang, D. Drechsel et al., Phys. Rev. C 64, 032201 (2001)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Cyprus InstituteNicosiaCyprus
  2. 2.National and Kapodistrian University of Athens, Physics DepartmentAthensGreece

Personalised recommendations