Charge specific baryon mass relations with deformed SUq(3) flavor symmetry
Abstract.
The quantum group \( SU_{q}(3) = U_{q}(su(3))\) is taken as a baryon flavor symmetry. Accounting for electromagnetic contributions to baryons masses up to zeroth order, new charge specific q-deformed octet and decuplet baryon mass formulas are obtained. These new mass relations have errors of only 0.02% and 0.08%, respectively, a factor of 20 reduction compared to the standard Gell-Mann-Okubo mass formulas. A new relation between the octet and decuplet baryon masses that is accurate to 1.2% is derived. An explicit formula for the Cabibbo angle, taken to be \(\frac{\pi}{14}\), in terms of the deformation parameter q and spin parity JP of the baryons is obtained.
References
- 1.A.M. Gavrilik, N.Z. Iorgov, Quantum groups as flavor symmetries: account of nonpolynomial SU(3)-breaking effects in baryon masses, arXiv:hep-ph/9807559 (1998)
- 2.A.M. Gavrilik, Nucl. Phys. B Proc. Suppl. 102, 298 (2001)ADSMathSciNetCrossRefGoogle Scholar
- 3.A.M. Gavrilik, Quantum groups in hadron phenomenology, arXiv:hep-ph/9712411 (1997)
- 4.G. Morpurgo, Phys. Rev. D 45, 1686 (1992)ADSCrossRefGoogle Scholar
- 5.G. Morpurgo, Phys. Rev. Lett. 68, 139 (1992)ADSCrossRefGoogle Scholar
- 6.G. Dillon, G. Morpurgo, Phys. Lett. B 481, 239 (2000)ADSCrossRefGoogle Scholar
- 7.Michio Jimbo, Lett. Math. Phys. 10, 63 (1985)ADSMathSciNetCrossRefGoogle Scholar
- 8.V.G. Drinfeld, Sov. Math. Dokl. 32, 254 (1985)Google Scholar
- 9.M. Jimbo, Lett. Math. Phys. 10, 63 (1985)ADSMathSciNetCrossRefGoogle Scholar
- 10.R.J. Finkelstein, On q-Electroweak arXiv:hep-th/0110075 (2001)
- 11.Robert J. Finkelstein, An $SLq(2)$ Extension of the Standard Model, arXiv:1205.1026 (2012)
- 12.Harold Steinacker, Commun. Math. Phys. 192, 687 (1998)CrossRefGoogle Scholar
- 13.Daniel Sternheimer, The geometry of space-time and its deformations from a physical perspective, in From Geometry to Quantum Mechanics (Springer, 2007) pp. 287--301Google Scholar
- 14.Shahn Majid, Henri Ruegg, Phys. Lett. B 334, 348 (1994)ADSMathSciNetCrossRefGoogle Scholar
- 15.Jerzy Lukierski, Anatol Nowicki, Int. J. Mod. Phys. A 18, 7 (2003)CrossRefGoogle Scholar
- 16.Leonardo Castellani, Julius Wess, Quantum Groups and Their Applications in Physics, Vol. 127 (IOS Press, 1996)Google Scholar
- 17.A.M. Gavrilik, Quantum algebras, particle phenomenology, and (quasi) supersymmetry, arXiv:hep-ph/0402082 (2004)
- 18.A Carcamo, The Gell-Mann-Okubo and Colemann-Glashow relations for octet and decuplet baryons in the $SU_q (3)$ quantum algebra, arXiv:hep-ph/0511202 (2005)
- 19.Murray Gell-Mann, The eightfold way: A theory of strong interaction symmetry, Technical report (California Inst. of Tech., Pasadena Synchrotron Lab., 1961)Google Scholar
- 20.Susumu Okubo, Prog. Theor. Phys. 27, 949 (1962)ADSCrossRefGoogle Scholar
- 21.S. Okubo, Phys. Lett. 4, 14 (1963)ADSMathSciNetCrossRefGoogle Scholar
- 22.G. Morpurgo, Phys. Rev. D 40, 2997 (1989)ADSCrossRefGoogle Scholar
- 23.Alexandre Gavrilik, Can the Cabibbo mixing originate from noncommutative extra dimensions? in Noncommutative Structures in Mathematics and Physics (Springer, 2001) pp. 343--355Google Scholar
- 24.R. Jaganathan, Some introductory notes on quantum groups, quantum algebras, and their applications, arXiv:math-ph/0105002 (2001)
- 25.Christiane Quesne, J. Phys. A: Math. Gen. 25, 5977 (1992)ADSCrossRefGoogle Scholar
- 26.Harold Steinacker, Commun. Math. Phys. 192, 687 (1998)CrossRefGoogle Scholar
- 27.A.M. Gavrilik, I.I. Kachurik, A.V. Tertychnyj, Representations of the $Uq(u(4,1))$ and a q-polynomial that determines baryon mass sum rules, arXiv:hep-ph/9504233 (1995)
- 28.Keith A. Olive, Particle Data Group et al., Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
- 29.M. Gerstenhaber, Ann. Math. 79, 59 (1964)MathSciNetCrossRefGoogle Scholar
- 30.A. Nijenhuis, R.W. Richardson, J. Math. Mech. 17, 89 (1967)MathSciNetGoogle Scholar
- 31.R.V. Mendes, J. Phys. A: Math. Gen. 27, 8091 (1994)ADSMathSciNetCrossRefGoogle Scholar
- 32.D.V. Ahluwalia, N.G. Gresnigt, A.B. Nielsen, D. Schritt, T.F. Watson, Int. J. Mod. Phys. D 17, 495 (2008)ADSMathSciNetCrossRefGoogle Scholar
- 33.C. Chryssomalakos, E. Okon, Int. J. Mod. Phys. D 13, 2003 (2004) arXiv:hep-th/0407080 ADSMathSciNetCrossRefGoogle Scholar
- 34.N.G. Gresnigt, P.F. Renaud, P.H. Butler, Int. J. Mod. Phys. D 16, 1519 (2007) arXiv:hep-th/0611034 ADSMathSciNetCrossRefGoogle Scholar
- 35.Robert J. Finkelstein, Int. J. Mod. Phys. A 20, 6487 (2005)ADSCrossRefGoogle Scholar
- 36.Robert J. Finkelstein, Int. J. Mod. Phys. A 22, 4467 (2007)ADSMathSciNetCrossRefGoogle Scholar
- 37.N.G. Gresnigt, A.B. Gillard, Electroweak symmetries from the topology of deformed spacetime with minimal length scale, arXiv:1512.04339 (2015)
- 38.Daniel Sternheimer, “The important thing is not to stop questioning”, including the symmetries on which is based the standard model, in Geometric Methods in Physics (Springer, 2014) pp. 7--37Google Scholar
- 39.Moshe Flato, Czech. J. Phys. 32, 472 (1982)ADSCrossRefGoogle Scholar
- 40.Philippe Bonneau, Daniel Sternheimer, Topological Hopf algebras, quantum groups and deformation quantization, arXiv:math/0307277 (2003)
Copyright information
© SIF, Springer-Verlag Berlin Heidelberg 2016