Advertisement

Charge specific baryon mass relations with deformed SUq(3) flavor symmetry

  • Niels G. GresnigtEmail author
Regular Article - Theoretical Physics

Abstract.

The quantum group \( SU_{q}(3) = U_{q}(su(3))\) is taken as a baryon flavor symmetry. Accounting for electromagnetic contributions to baryons masses up to zeroth order, new charge specific q-deformed octet and decuplet baryon mass formulas are obtained. These new mass relations have errors of only 0.02% and 0.08%, respectively, a factor of 20 reduction compared to the standard Gell-Mann-Okubo mass formulas. A new relation between the octet and decuplet baryon masses that is accurate to 1.2% is derived. An explicit formula for the Cabibbo angle, taken to be \(\frac{\pi}{14}\), in terms of the deformation parameter q and spin parity JP of the baryons is obtained.

References

  1. 1.
    A.M. Gavrilik, N.Z. Iorgov, Quantum groups as flavor symmetries: account of nonpolynomial SU(3)-breaking effects in baryon masses, arXiv:hep-ph/9807559 (1998)
  2. 2.
    A.M. Gavrilik, Nucl. Phys. B Proc. Suppl. 102, 298 (2001)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A.M. Gavrilik, Quantum groups in hadron phenomenology, arXiv:hep-ph/9712411 (1997)
  4. 4.
    G. Morpurgo, Phys. Rev. D 45, 1686 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    G. Morpurgo, Phys. Rev. Lett. 68, 139 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    G. Dillon, G. Morpurgo, Phys. Lett. B 481, 239 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Michio Jimbo, Lett. Math. Phys. 10, 63 (1985)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    V.G. Drinfeld, Sov. Math. Dokl. 32, 254 (1985)Google Scholar
  9. 9.
    M. Jimbo, Lett. Math. Phys. 10, 63 (1985)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R.J. Finkelstein, On q-Electroweak arXiv:hep-th/0110075 (2001)
  11. 11.
    Robert J. Finkelstein, An $SLq(2)$ Extension of the Standard Model, arXiv:1205.1026 (2012)
  12. 12.
    Harold Steinacker, Commun. Math. Phys. 192, 687 (1998)CrossRefGoogle Scholar
  13. 13.
    Daniel Sternheimer, The geometry of space-time and its deformations from a physical perspective, in From Geometry to Quantum Mechanics (Springer, 2007) pp. 287--301Google Scholar
  14. 14.
    Shahn Majid, Henri Ruegg, Phys. Lett. B 334, 348 (1994)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jerzy Lukierski, Anatol Nowicki, Int. J. Mod. Phys. A 18, 7 (2003)CrossRefGoogle Scholar
  16. 16.
    Leonardo Castellani, Julius Wess, Quantum Groups and Their Applications in Physics, Vol. 127 (IOS Press, 1996)Google Scholar
  17. 17.
    A.M. Gavrilik, Quantum algebras, particle phenomenology, and (quasi) supersymmetry, arXiv:hep-ph/0402082 (2004)
  18. 18.
    A Carcamo, The Gell-Mann-Okubo and Colemann-Glashow relations for octet and decuplet baryons in the $SU_q (3)$ quantum algebra, arXiv:hep-ph/0511202 (2005)
  19. 19.
    Murray Gell-Mann, The eightfold way: A theory of strong interaction symmetry, Technical report (California Inst. of Tech., Pasadena Synchrotron Lab., 1961)Google Scholar
  20. 20.
    Susumu Okubo, Prog. Theor. Phys. 27, 949 (1962)ADSCrossRefGoogle Scholar
  21. 21.
    S. Okubo, Phys. Lett. 4, 14 (1963)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    G. Morpurgo, Phys. Rev. D 40, 2997 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    Alexandre Gavrilik, Can the Cabibbo mixing originate from noncommutative extra dimensions? in Noncommutative Structures in Mathematics and Physics (Springer, 2001) pp. 343--355Google Scholar
  24. 24.
    R. Jaganathan, Some introductory notes on quantum groups, quantum algebras, and their applications, arXiv:math-ph/0105002 (2001)
  25. 25.
    Christiane Quesne, J. Phys. A: Math. Gen. 25, 5977 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    Harold Steinacker, Commun. Math. Phys. 192, 687 (1998)CrossRefGoogle Scholar
  27. 27.
    A.M. Gavrilik, I.I. Kachurik, A.V. Tertychnyj, Representations of the $Uq(u(4,1))$ and a q-polynomial that determines baryon mass sum rules, arXiv:hep-ph/9504233 (1995)
  28. 28.
    Keith A. Olive, Particle Data Group et al., Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Gerstenhaber, Ann. Math. 79, 59 (1964)MathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Nijenhuis, R.W. Richardson, J. Math. Mech. 17, 89 (1967)MathSciNetGoogle Scholar
  31. 31.
    R.V. Mendes, J. Phys. A: Math. Gen. 27, 8091 (1994)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    D.V. Ahluwalia, N.G. Gresnigt, A.B. Nielsen, D. Schritt, T.F. Watson, Int. J. Mod. Phys. D 17, 495 (2008)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Chryssomalakos, E. Okon, Int. J. Mod. Phys. D 13, 2003 (2004) arXiv:hep-th/0407080 ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    N.G. Gresnigt, P.F. Renaud, P.H. Butler, Int. J. Mod. Phys. D 16, 1519 (2007) arXiv:hep-th/0611034 ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Robert J. Finkelstein, Int. J. Mod. Phys. A 20, 6487 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Robert J. Finkelstein, Int. J. Mod. Phys. A 22, 4467 (2007)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    N.G. Gresnigt, A.B. Gillard, Electroweak symmetries from the topology of deformed spacetime with minimal length scale, arXiv:1512.04339 (2015)
  38. 38.
    Daniel Sternheimer, “The important thing is not to stop questioning”, including the symmetries on which is based the standard model, in Geometric Methods in Physics (Springer, 2014) pp. 7--37Google Scholar
  39. 39.
    Moshe Flato, Czech. J. Phys. 32, 472 (1982)ADSCrossRefGoogle Scholar
  40. 40.
    Philippe Bonneau, Daniel Sternheimer, Topological Hopf algebras, quantum groups and deformation quantization, arXiv:math/0307277 (2003)

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematical SciencesXi’an Jiaotong-Liverpool UniversityJiangsuChina

Personalised recommendations