Izvestiya, Physics of the Solid Earth

, Volume 44, Issue 4, pp 291–302 | Cite as

Effect of the oceanic lithosphere velocity on free convection in the asthenosphere beneath mid-ocean ridges

  • A. A. Kirdyashkin
  • A. G. Kirdyashkin


The paper presents results obtained in experiments on a horizontal layer heated from below in its central part and cooled from above; the layer models the oceanic asthenosphere. Flow velocity and temperature profiles are measured and the flow structure under boundary layer conditions is determined (at Rayleigh numbers Ra > 5 × 105). The flow in the core of a plane horizontal layer heated laterally and cooled from above develops under conditions of a constant temperature gradient averaged over the layer thickness. The flow core is modeled by a horizontal layer with a moving upper boundary and with adiabatic bounding surfaces under conditions of a constant horizontal gradient of temperature. Exact solutions of free convection equations are found for this model in the Boussinesq approximation. Model results are compared with experimental data. Temperature and flow velocity ranges are determined for the boundary layer regime. Based on the experimental flow velocity profiles, an expression is found for the flow velocity profile in a horizontal layer with a mobile upper boundary heated laterally and cooled from above. Free convection velocity profiles are obtained for the asthenosphere beneath a mid-ocean ridge (MOR) with a mobile lithosphere. An expression is obtained for the tangential stress at the top of the asthenosphere beneath an MOR and the total friction force produced by the asthenospheric flow at the asthenosphere-lithosphere boundary is determined.

PACS numbers

47.55.P- 91.45.Fj 91.35.Gf 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. L. Anderson, D. Isaak, and H. Oda, “High-Temperature Elastic Constant Data on Minerals Relevant to Geophysics,” Rev. Geophys. 30(1), 57–90 (1992).CrossRefGoogle Scholar
  2. 2.
    K. Barnouin-Jha, E. M. Parmentier, and D. W. Sparks, “The Contribution of Buoyant Mantle Upwelling and Melt Generation to Crustal Production at Oceanic Spreading Centers,” J. Geophys. Res. 102(B6), 979–989 (1997).CrossRefGoogle Scholar
  3. 3.
    F. Birch, J. F. Schairer, and H. C. Spicer, Handbook of Physical Constants, Geol. Soc. Am. Spec. Pap. 36 (1942; IIL, Moscow, 1949).Google Scholar
  4. 4.
    R. R. Boutilier and C. Keen, “Small-Scale Convection and Divergent Plate Boundaries,” J. Geophys. Res. 104(B4), 7389–7404 (1999).CrossRefGoogle Scholar
  5. 5.
    M. G. Braun, G. Hirth, and E. M. Parmentier, “The Effects of Deep Damp Melting on Mantle Flow and Melt Generation beneath Mid-Ocean Ridges,” Earth Planet. Sci. Lett. 176(3–4), 339–356 (2000).CrossRefGoogle Scholar
  6. 6.
    G. Choblet and E. M. Parmentier, “Mantle Upwelling and Melting beneath Slow Spreading Centers: Effects of Variable Rheology and Melt Productivity,” Geotektonika 184(3–4), 589–604 (2001).Google Scholar
  7. 7.
    N. L. Dobretsov and A. G. Kirdyashkin, Deep-Level Geodynamics (Balkema, Rotterdam, 1998).Google Scholar
  8. 8.
    N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (SO RAN, Filial “GEO”, Novosibirsk, 2001) [in Russian].Google Scholar
  9. 9.
    J. E. Georgen and J. Lin, “Three-Dimensional Passive Flow and Temperature Structure beneath Oceanic Ridge-Ridge-Ridge Triple Junctions,” Geotektonika 204(1–2), 115–132 (2002).Google Scholar
  10. 10.
    Handbook of Physical Constants, Ed. by S. Clark (Geol. Soc. Am., New York, 1966; Mir, Moscow, 1969) [in Russian].Google Scholar
  11. 11.
    C. Kincaid, D. W. Sparks, and R. S. Detrick, “The Relative Importance of Plate-Driven and Buoyancy-Driven Flow at Mid-Ocean Ridges,” J. Geophys. Res. 101(B7), 194 (1996).CrossRefGoogle Scholar
  12. 12.
    A. G. Kirdyashkin, “Thermogravitational and Thermocapillary Flows in a Horizontal Liquid Layer under the Conditions of a Horizontal Temperature Gradient,” Int. J. Heat Mass Transfer 27(8), 1205–1218 (1984).CrossRefGoogle Scholar
  13. 13.
    A. G. Kirdyashkin, Thermogravitational Flows and Heat Exchange in the Asthenosphere (Nauka, Novosibirsk, 1989) [in Russian].Google Scholar
  14. 14.
    A. A. Kirdyashkin, A. G. Kirdyashkin, and N. L. Dobretsov, “The Subduction Effect on the Structure of Thermogravitational Flows in the Asthenosphere beneath a Continent,” Geol. Geofiz. 41(2), 207–219 (2000).Google Scholar
  15. 15.
    A. A. Kirdyashkin, N. L. Dobretsov, and A. G. Kirdyashkin, “Experimental Modeling of the Subduction Effect on the Spatial Structure of Convective Flows in the Asthenosphere beneath a Continent,” Dokl. Akad. Nauk 384(5), 682–686 (2002).Google Scholar
  16. 16.
    A. A. Kirdyashkin, A. G. Kirdyashkin, and N. V. Surkov, “Thermogravitational Convection in the Asthenosphere beneath a Mid-Ocean Ridge and the Stability of Main Deep Parageneses,” Geol. Geofiz. 47(1), 76–94 (2006).Google Scholar
  17. 17.
    L. S. Magde, C. Kincaid, D. W. Sparks, and R. S. Detrick, “Combined Laboratory and Numerical Studies of the Interaction between Buoyant and Plate-Driven Upwelling beneath Segmented Spreading Centers,” J. Geophys. Res. 101(B10), 22 107–22 122 (1996).CrossRefGoogle Scholar
  18. 18.
    L. Magde and D. W. Sparks, “Three-Dimensional Mantle Upwelling, Melt Generation and Melt Migration beneath Segmented Slow-Spreading Ridges,” J. Geophys. Res. 102(B9), 20 571–20 583 (1997).CrossRefGoogle Scholar
  19. 19.
    Physical Properties of Rocks and Minerals, Ed. by N. B. Dortman (Nedra, Moscow, 1984) [in Russian].Google Scholar
  20. 20.
    Physical Properties of Minerals and Rocks under High P-T Conditions, Ed. by M. P. Volarovich (Nedra, Moscow, 1988) [in Russian].Google Scholar
  21. 21.
    F. M. Richter and B. Parsons, “On the Interaction of Two Scales of Convection in the Mantle,” J. Geophys. Res. 80(17), 2529–2541 (1975).CrossRefGoogle Scholar
  22. 22.
    G. Schlichting, Boundary Layer Theory (Nauka, Moscow, 1969) [in Russian].Google Scholar
  23. 23.
    D. W. Sparks and E. M. Parmentier, “Melt Extraction from the Mantle beneath Spreading Centers,” Earth Planet. Sci. Lett. 105(4), 368–377 (1991).CrossRefGoogle Scholar
  24. 24.
    D. W. Sparks and E. M. Parmentier, “The Structure of Three-Dimensional Convection beneath Oceanic Spreading Centers,” Geophys. J. Int. 112(1), 81–91 (1993).CrossRefGoogle Scholar
  25. 25.
    D. W. Sparks, E. M. Parmentier, and J. P. Morgan, “Three-Dimensional Convection beneath a Segmented Spreading Center: Implications for Along-Axis Variations in Crustal Thickness and Gravity,” J. Geophys. Res. 98(B12), 21 977–21 996 (1993).CrossRefGoogle Scholar
  26. 26.
    V. P. Trubitsyn, “Tectonics of Floating Continents,” Vestnik Ross. Akad. Nauk 757(1), 10–21 (2005).Google Scholar
  27. 27.
    N. B. Vargaftik, Tables of the Thermophysical Properties of Liquids and Gases, 2nd ed. (Nauka, Moscow, 1972; Halsted Press, New York, 1975).Google Scholar
  28. 28.
    B. P. West, W. S. D. Wilcock, J.-C. Sempere, and L. Geli, “Three-Dimensional Structure of Asthenospheric Flow beneath the Southeast Indian Ridge,” J. Geophys. Res. 102(B4), 7783–7802 (1997).CrossRefGoogle Scholar
  29. 29.
    J. Zhang and A. Libchaber, “Periodic Boundary Motion in Thermal Turbulence,” Phys. Rev. Lett. 84(19), 4361–4364 (2000).CrossRefGoogle Scholar
  30. 30.
    V. N. Zharkov, Inner Constitution of the Earth and Planets (Nauka, Moscow, 1983) [in Russian].Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations