Advertisement

High Temperature

, Volume 46, Issue 2, pp 234–242 | Cite as

A nonlinear critical layer in nonequilibrium gas

  • I. P. Zavershinskii
  • E. Ya. Kogan
  • V. N. Knestyapin
Heat and Mass Transfer and Physical Gasdynamics
  • 20 Downloads

Abstract

The method of matched asymptotic expansions is used to analyze the evolution of disturbances of a nonequilibrium compressible boundary layer on a flat plate in the region of nonlinear critical layer. A dispersion relation is obtained for low-amplitude subsonic disturbances. An equation is derived, which describes the evolution of disturbance in the nonlinear stage of its development. It is demonstrated that, similar to the case of equilibrium media, the increase in the disturbance amplitude in the given stage of development of turbulence exhibits an explosive pattern. The characteristic time of instability decreases with increasing degree of disequilibrium of the medium.

PACS numbers

47.20.lb 47.27.nb 47.70.nd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lin, C.-C., The Theory of Hydrodynamic Stability, Cambridge: Cambridge University Press, 1955. Translated under the title Teoriya gidrodinamicheskoi ustoichivosti, Moscow: IL, 1958.MATHGoogle Scholar
  2. 2.
    Dunn, D.W. and Lin, C.C., J. Aeronaut. Sci., 1952, vol. 19, no. 7, p. 491.MathSciNetGoogle Scholar
  3. 3.
    Gaponov, S.A. and Maslov, A.A., Razvitie vozmushchenii v szhimaemykh potokakh (Development of Disturbances in Compressible Flows), Novosibirsk: Nauka, 1980.Google Scholar
  4. 4.
    Zhigulev, V.N. and Tumin, A.M., Vozniknovenie turbulentnosti (Emergence of Turbulence), Novosibirsk: Nauka, 1987.MATHGoogle Scholar
  5. 5.
    Benney, D.J. and Bergeron, R.F., Stud. Appl. Math., 1969, vol. 48, no. 2, p. 181.MATHGoogle Scholar
  6. 6.
    Reed, H., Saric, W., and Arnal, D., Ann. Rev. Fluid Mech., 1996, vol. 28, p. 389.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Bertolotti, F.P. and Herbert, Th., Theor. Comp. Fluid Dyn., 1991, no. 3, p. 117.Google Scholar
  8. 8.
    Miskad, R.W., J. Fluid Mech., 1972, vol. 52, no. 4, p. 125.Google Scholar
  9. 9.
    Koch, W., Bertolotti, F.P., Stolte, A., and Hein, S., J. Fluid Mech., 2000, no. 406, p. 131.Google Scholar
  10. 10.
    Bychkov, V.L., Grachev, L.P., Esakov, I.I., et al., Mathematical and Experimental Investigation of Supersonic Flow past a Blunt Body in the Presence of Longitudinal Electric Discharge, Preprint of Inst. of Applied Mathematics, Russ. Acad. Sci.-IPM AN, Moscow, 1997, no. 27.Google Scholar
  11. 11.
    Beaulieu, W., Klimov, A., Bityurin, V., et al., Plasma Aerodynamic WT Tests with 1/6 Scale Model of Nose Part of F-15, AIAA Paper 99-4825.Google Scholar
  12. 12.
    Macheret, S.O., Ionikh, Yu.Z., Martinelli, L., et al., External Control of Plasmas for High-Speed Aerodynamics, AIAA Paper 99-4853.Google Scholar
  13. 13.
    Miles, R.B., Macheret, S.O., Martinelli, L., et al., Plasma Control of Shock Waves in Aerodynamics and Sonic Boom Mitigation, in 3rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, Moscow, 2001, p. 25.Google Scholar
  14. 14.
    Zavershinskii, I.P. and Kogan, E.Ya., Pis’ma Zh. Tekh. Fiz., 2000, vol. 26, no. 5, p. 76 (Tech. Phys. Lett. (Engl. transl.), vol. 26, no. 5).Google Scholar
  15. 15.
    Molevich, N.E. and Oraevskii, A.N., Zh. Éksp. Teor. Fiz., 1988, vol. 94, no. 3, p. 128.ADSGoogle Scholar
  16. 16.
    Osipov, A.I. and Uvarov, A.V., Usp. Fiz. Nauk, 1992, vol. 162, no. 11, p. 1.Google Scholar
  17. 17.
    Gridin, A.Yu., Klimov, A.I., and Molevich, N.E., Zh. Tekh. Fiz., 1993, vol. 63, no. 3, p. 157.Google Scholar
  18. 18.
    Makaryan, V.G. and Molevich, N.E., Pis’ma Zh. Tekh. Fiz., 2003, vol. 68, no. 3, p. 194 (Tech. Phys. Lett. (Engl. transl.), vol. 68, no. 3).Google Scholar
  19. 19.
    Zavershinskii, I.P. and Kogan, E.Ya., Teplofiz. Vys. Temp., 2000, vol. 38, no. 2, p. 293 (High Temp. (Engl. transl.), vol. 38, no. 2, p. 273).Google Scholar
  20. 20.
    Kogan, E.Ya. and Molevich, N.E., Akust. Zh., 1995, vol. 41, no. 4, p. 613 (Acoust. Phys. (Engl. transl.), vol. 41, no. 4).Google Scholar
  21. 21.
    Molevich, N.E., Pis’ma Zh. Tekh. Fiz., 2001, vol. 27, no. 14, p. 51 (Tech. Phys. Lett. (Engl. transl.), vol. 27, no. 14).Google Scholar
  22. 22.
    Zavershinskii, I.P., Kogan, E.Ya., and Molevich, N.E., Akust. Zh., 1999, vol. 45, no. 1, p. 69 (Acoust. Phys. (Engl. transl.), vol. 45, no. 1).Google Scholar
  23. 23.
    Molevich, N.E., Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 1999, no. 5, p. 82.Google Scholar
  24. 24.
    Bertolotti, F.P., J. Fluid Mech., 1998, vol. 372, p. 93.MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • I. P. Zavershinskii
    • 1
  • E. Ya. Kogan
    • 1
  • V. N. Knestyapin
    • 1
  1. 1.Korolev State Aerospace UniversitySamaraRussia

Personalised recommendations