Skip to main content
Log in

Thermometry of microwave discharge in powder mixtures by the thermal radiation spectrum

  • Methods of Experimental Investigation and Measurements
  • Published:
High Temperature Aims and scope

Abstract

The temperature is determined in pulsed microwave discharges in powder mixtures at atmospheric pressure. The effect of microwave radiation of gyrotron (wavelength of 4 mm, power up to 200 kW, pulse duration of 1 to 10 ms) on a finely divided medium causes the emergence of plasma in a gas medium between solid particles; the thresholds (with respect to power) of generation of plasma in powder mixtures are hundreds of times lower than those in gas. The method of determining the discharge temperature consists in recording the radiation in a wide spectral range (200 to 850 nm) and comparing the obtained spectrum with the Planck spectrum in the Wien region. In the case of similarity of two spectra, the discharge temperature is determined as a parameter of the spectrum under observation. In so doing, no data on the emissivity of discharge are required for determining the temperature. It is demonstrated that microwave-discharge plasma in powders is characterized by a temperature of 2000–3000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kop’ev, V.A., Kossyi, I.A., Magunov, A.N., and Tarasova, N.M., Thermometry by Distribution of Intensity in Radiation Spectrum, in Tezisy II Vserossiiskoi konferentsii po problemam termometrii “Temperatura-2004” (Abstracts of Papers to II All-Russia Conference on the Problems in Thermometry “Temperatura-2004”), Obninsk, 2004, p. 66.

  2. Batanov, G.M., Berezhetskaya, N.K., Kossyi, I.A. et al., Eur. Phys. J. Appl. Phys., 2004, vol. 26, p. 11.

    Article  ADS  Google Scholar 

  3. Batanov, G.M., Berezhetskaya, N.K., Kop’ev, V.A. et al., Fiz. Plazmy, 2002, vol. 28, no. 10, p. 945 (Plasma Phys. Rep. (Engl. transl.), vol. 28, no. 10).

    Google Scholar 

  4. Batanov, G.M., Gritsinin, S.I., Kossyi, I.A. et al., Tr. Fiz. Inst. Akad. Nauk SSSR, 1985, vol. 160, p. 174.

    Google Scholar 

  5. Sugiyama, K., Kiyokawa, K., Matsuoka, H. et al., Thin Solid Films, 1998, vol. 316, p. 117.

    Article  Google Scholar 

  6. Kiyokawa, K., Sugiyama, K., and Tomimatsu, M., Thin Solid Films, 2001, vol. 386, p. 147.

    Article  Google Scholar 

  7. Kiyokawa, K., Sugiyama, K., Tomimatsu, M. et al., Appl. Surf. Sci., 2001, vol. 169, p. 599.

    Article  ADS  Google Scholar 

  8. Vaucher, S., Catala-Civera, J.M., Sarna, A. et al., J. Appl. Phys., 2006, vol. 99, no. 11, p. 1350.

    Article  Google Scholar 

  9. Blokh, A.G., Zhuravlev, Yu.A., and Ryzhkov, L.N., Teploobmen izlucheniem (Radiation Heat Transfer), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  10. Batanov, G.M., Berezhetskaya, N.K., Kossyi, I.A., and Magunov, A.N., Fiz. Plazmy, 2006, vol. 32, no. 6, p. 571 (Plasma Phys. Rep. (Engl. transl.), vol. 32, no. 6).

    Google Scholar 

  11. Peng, J., Binner, J., and Bradshaw, S., J. Mater. Synth. Process., 2001, vol. 9, no. 6, p. 363.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.M. Batanov, N.K. Berezhetskaya, V.A. Kop’ev, I.A. Kossyi, A.N. Magunov, 2008, published in Teplofizika Vysokikh Temperatur, Vol. 46, No. 1, 2008, pp. 135–141.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batanov, G.M., Berezhetskaya, N.K., Kop’ev, V.A. et al. Thermometry of microwave discharge in powder mixtures by the thermal radiation spectrum. High Temp 46, 124–130 (2008). https://doi.org/10.1134/s10740-008-1017-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/s10740-008-1017-y

PACS numbers

Navigation