Skip to main content
Log in

Numerical simulation of IR absorption, reflection, and scattering in dispersed water-oxygen media

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The method of molecular dynamics along with the flexible model of molecules are used to study the spectral characteristics of systems of clusters of (H2O) n , (O2) m (H2O) n , and (O) i (H2O) n , m ≤ 2, i ≤ 4, 10 ≤ n ≤ 50. It is demonstrated that the integral intensity of absorption of IR radiation decays after water clusters adsorb oxygen. In addition, the adsorption of oxygen causes a significant decrease in the reflection coefficient R of monochromatic IR radiation. In so doing, the R(ω) spectrum splits into bands and exhibits seven peaks in the frequency region of 0 ≤ ω ≤ 3500 cm−1. The dissociation of oxygen molecules captured by clusters makes the peaks of R(ω) spectrum more resolved. The attachment of molecular oxygen by clusters leads to decay of the power of their IR radiation, while the capture of atomic oxygen, on the contrary, is accompanied by an increase in the rate of dissipation of energy accumulated by water aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snow, G.E. and Javor, G.T., Origins, 1975, vol. 2, p. 59.

    Google Scholar 

  2. Chibowski, E., Holysz, L., Szczes, A., and Chibowski, M., Water Sci. Technol., 2004, vol. 49, p. 169.

    Google Scholar 

  3. Gruenlon, C.J., Carney, J.R., Hagemeister, F.C. et al., J. Chem. Phys., 2000, vol. 113, p. 2290.

    Article  ADS  Google Scholar 

  4. Galashev, A.E., Chukanov, V.N., and Galasheva, O.A., Kolloidn. Zh., 2006, vol. 68, no. 2, p. 155.

    Google Scholar 

  5. Berendsen, H.J.C., Postma, J.P.M., Gunsteren, W.F., and Hermans, J., in Intermolecular Forces, Pullman, B., Ed., Dordrecht: Reidel, 1981, p. 331.

    Google Scholar 

  6. Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P., J. Phys. Chem., 1987, vol. 91, p. 6269.

    Article  Google Scholar 

  7. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., et al., J. Chem. Phys., 1983, vol. 79, p. 926.

    Article  ADS  Google Scholar 

  8. Dang, L.X. and Chang, T.-M., J. Chem. Phys., 1997, vol. 106, p. 8149.

    Article  ADS  Google Scholar 

  9. Galashev, A.E., Rakhmanova, O.R., and Chukanov, V.N., Khim. Fiz., 2005, vol. 24, no. 3, p. 90.

    Google Scholar 

  10. Spackman, M.A., J. Chem. Phys., 1986, vol. 85, p. 6579.

    Article  ADS  Google Scholar 

  11. Spackman, M.A., J. Chem. Phys., 1986, vol. 85, p. 6587.

    Article  ADS  Google Scholar 

  12. Saint-Martin, H., Hess, B., and Berendsen, H.J.C., J. Chem. Phys., 2004, vol. 120, p. 11 133.

    Article  Google Scholar 

  13. Lemberg, H.L. and Stillinger, F.H., J. Chem. Phys., 1975, vol. 62, p. 1677.

    Article  ADS  Google Scholar 

  14. Rahman, A., Stillinger, F.H., and Lemberg, H.L., J. Chem. Phys., 1975, vol. 63, p. 5223.

    Article  ADS  Google Scholar 

  15. Haile, J.M., Molecular Dynamics Simulation. Elementary Methods, New York: Wiley, 1992.

    Google Scholar 

  16. Koshlyakov, V.N., Zadachi dinamiki tverdogo tela i prikladnoi teorii giroskopov (Problems in Dynamics of Solids and Applied Theory of Gyroscopes), Moscow: Nauka, 1985.

    Google Scholar 

  17. Sonnenschein, R., J. Comput. Phys., 1985, vol. 59, p. 347.

    Article  MATH  ADS  Google Scholar 

  18. Kalinichev, A.G. and Heinzinger, K., Geochim. Cosmochim. Acta, 1995, vol. 59, p. 641.

    Article  ADS  Google Scholar 

  19. Farber, D.L., Williams, Q., and Knittle, E., EOS Trans. Am. Geophys. Union, 1990, vol. 71, p. 1600.

    Google Scholar 

  20. Kohl, W., Lindner, H.A., and Franck, E.U., Ber. Bunsenges. Phys. Chem., 1991, vol. 95, p. 1586.

    Google Scholar 

  21. Stem, H.A. and Berne, B.J., J. Chem. Phys., 2001, vol. 115, p. 7622.

    Article  ADS  Google Scholar 

  22. Sremaniak, L.S., Perera, L., and Berkowitz, M.L., J. Chem. Phys., 1996, vol. 105, no. 9, p. 3715.

    Article  ADS  Google Scholar 

  23. Tsai, C.J. and Jordan, K.D., J. Phys. Chem., 1993, vol. 97, p. 5207.

    Google Scholar 

  24. Dang, L.X. and Garrett, B.C., J. Chem. Phys., 1993, vol. 99, p. 2972.

    Article  ADS  Google Scholar 

  25. Landau, L.D. and Lifshitz, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982, vol. 8.

    Google Scholar 

  26. Fizicheskaya entsiklopediya. T. 1 (Physical Encyclopedia), Prokhorov, A.M., Ed., Moscow: Sovetskaya Entsiklopediya, 1988, p. 702.

    Google Scholar 

  27. Bresme, F., J. Chem. Phys., 2001, vol. 115, p. 7564.

    Article  ADS  Google Scholar 

  28. Neumann, M., J. Chem. Phys., 1985, vol. 82, p. 5663.

    Article  ADS  Google Scholar 

  29. Bosma, W.B., Fried, L.E., and Mukamel, S., J. Chem. Phys., 1993, vol. 98, p. 4413.

    Article  ADS  Google Scholar 

  30. Neumann, M., J. Chem. Phys., 1986, vol. 85, p. 1567.

    Article  ADS  Google Scholar 

  31. Goggin, P.L. and Carr, C., Far Infrared Spectroscopy and Aqueous Solutions, in Water and Aqueous Solutions, Bristol-Boston: Adam Hilger, 1986, vol. 37, p. 149.

    Google Scholar 

  32. van der Maas, J.H., Basic Infrared Spectroscopy, London: Pitman Press, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Novruzova, A.E. Galashev, 2008, published in Teplofizika Vysokikh Temperatur, Vol. 46, No. 1, 2008, pp. 66–75.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novruzova, O.A., Galashev, A.E. Numerical simulation of IR absorption, reflection, and scattering in dispersed water-oxygen media. High Temp 46, 60–68 (2008). https://doi.org/10.1134/s10740-008-1009-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/s10740-008-1009-y

PACS numbers

Navigation