Electrochemical Properties and Selectivity of Bilayer Ion-Exchange Membranes in Ternary Solutions of Strong Electrolytes

Abstract

Bilayer ion-exchange membranes consisting of a thick heterogeneous membrane layer and a thin homogeneous membrane layer are studied theoretically and experimentally for their electrochemical properties such as overall and partial current–voltage curves, external and internal diffusion-limited currents, effective transference numbers, and specific selectivity for counterions and coions to be separated. For a diffusion layer (I)/modifying layer (II)/substrate membrane (III)/diffusion layer (IV) system in ternary solutions of electrolytes, we develop and verify a four-layer mathematical model with quasi-equilibrium boundary conditions. For the conditions of small current densities and limiting currents, we obtain analytical expressions for calculations of the limiting current, effective transference numbers, and specific selectivity coefficients. A numerical approach to calculating the specific selectivity coefficients is proposed. The mathematical model is verified for two electromembrane systems: one system is an anisotropic bilayer membrane with its MK-41 and MF-4SK polymer matrices having the same type of charge in a mixed CaCl2 + NaCl solution, and in another one its MA-41 and MF-4SK matrices have opposite types of charge in a mixed Na2SO4 + NaNO3 solution. The transport parameters of both the modifying film (MF-4SK) and initial membranes (MK-40 and MA-41) are determined in single-component and mixed electrolyte solutions in separate experiments.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. 1

    J. Balster, R. Sumbharaju, S. Srikantharajah, et al., J. Membr. Sci. 287, 246 (2007).https://doi.org/10.1016/j.memsci.2006.10.042

  2. 2

    K. Zhang, M. Wang, D. Wang, and C. Gao, J. Membr. Sci. 341, 246 (2009).

    CAS  Article  Google Scholar 

  3. 3

    E. Molnár, N. Nemestóthy, and K. Bélafi-Bakó, Desalination 250, 1128 (2010).

    Article  CAS  Google Scholar 

  4. 4

    H. Jaroszek and P. Dydo, Open Chem. 14, 1 (2016).

    CAS  Article  Google Scholar 

  5. 5

    E. Güler, W. van Baak, M. Saakes, and K. Nijmeijer, J. Membr. Sci. 455, 254 (2014).

    Article  CAS  Google Scholar 

  6. 6

    R. A. Tufa and S. Pawlowski, J. Veerman, et al., Appl. Energy 225, 290 (2018).

    CAS  Article  Google Scholar 

  7. 7

    J. Grimm, D. Bessarabov, and R. Sanderson, Desalination 115, 285 (1998).

    CAS  Article  Google Scholar 

  8. 8

    J. W. Post, J. Veerman, G. J. Hamelers, et al., J. Membr. Sci. 288, 218 (2007).

    CAS  Article  Google Scholar 

  9. 9

    J. Veerman, R. M. Jong, M. Saakes, S. J. Metz, and G. J. Harmsen, J. Membr. Sci. 343, 7 (2009).

    CAS  Article  Google Scholar 

  10. 10

    W. Tang, D. He, C. Zhang, P. Kovalsky, and T. D. Waite, Water Res. 120, 229 (2017).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    X. F. Li, H. M. Zhang, Z. S. Mai, et al., Energy Environ. Sci. 4, 1147 (2011).

    CAS  Article  Google Scholar 

  12. 12

    J. Sheng, A. Mukhopadhyay, W. Wang, and H. Zhu, Mater. Today Nano 7 (2019), 100044.

    Article  Google Scholar 

  13. 13

    P. Y. Apel, O. V. Bobreshova, A. V. Volkov, V. V. Volkov, V. V. Nikonenko, I. A. Stenina, A. N. Filippov, Yu. P. Yampolskii, and A. B. Yaroslavtsev, Membr. Membr. Technol. 1, 45 (2019). https://doi.org/10.1134/S2517751619020021

    CAS  Article  Google Scholar 

  14. 14

    Y. Qian, L. Huang, Y. Pan, X. Quan, et al., Sep. Purif. Technol. 192, 78 (2018).

    CAS  Article  Google Scholar 

  15. 15

    S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov, Adv. Drug Delivery Rev. 54, 135 (2002).

    CAS  Article  Google Scholar 

  16. 16

    D. Schmaljohann, Adv. Drug Delivery Rev. 58, 1655 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Y. Qiu and K. Park, Adv. Drug Delivery Rev. 64, 49 (2012).

    Article  Google Scholar 

  18. 18

    Y. Zhou, H. Yan, X. Wang, Y. Wang, and T. Xu, J. Membr. Sci. 520, 345 (2016). https://doi.org/10.1016/j.memsci.2016.08.011

    CAS  Article  Google Scholar 

  19. 19

    Y. Chen, J. R. Davis, C. H. Nguyen, J. C. Baygents, and J. Farrell, Environ. Sci. Technol. 50, 5900 (2016). https://doi.org/10.1021/acs.est.5b05606

    CAS  Article  PubMed  Google Scholar 

  20. 20

    O. Nir, R. G. Sengpiel, and M. Wessling, Chem. Eng. J. 346, 640 (2018). https://doi.org/10.1016/j.cej.2018.03.181

    CAS  Article  Google Scholar 

  21. 21

    C. Díaz Nieto, N. Palacios, K. Verbeeck, et al., Water Res. 154 (2019), 117. https://doi.org/10.1016/j.watres.2019.01.050

    CAS  Article  PubMed  Google Scholar 

  22. 22

    J. Ran, L. Wu, Y. He, Z. Yang, et al., J. Membr. Sci. 522, 267 (2017).https://doi.org/10.1016/j.memsci.2016.09.033

  23. 23

    S. Lacour, V. Deluchat, J. C. Bollinger, and B. Serpaud, Talanta 46, 999 (1998).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    T. Sata and W. Yang, J. Membr. Sci. 211, 177 (2003).

    CAS  Article  Google Scholar 

  25. 25

    T. Sata, Ion Exchange Membranes: Preparation, Characterization, Modification and Application (Royal Society of Chemistry, 2007).

    Google Scholar 

  26. 26

    D. Ariono, J. Appl. Polym. Sci. 134, 45540 (2017).

    Article  CAS  Google Scholar 

  27. 27

    D. V. Golubenko and A. B. Yaroslavtsev, J. Membr. Sci. 612, 118408 (2020). https://doi.org/10.1016/j.memsci.2020.118408

    CAS  Article  Google Scholar 

  28. 28

    V. Zabolotskii, N. Sheldeshov, and S. Melnikov, J. Appl. Electrochem. 43, 1117 (2013).

    CAS  Article  Google Scholar 

  29. 29

    A. Filippov, D. Petrova, I. Falina, N. Kononenko, et al., Polymers 10, 366 (2018). https://doi.org/10.3390/polym10040366

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  30. 30

    S. Abdu and M. Wessling, Appl. Mater. Interfaces 3, 1843 (2014). https://doi.org/10.1021/am4048317

    CAS  Article  Google Scholar 

  31. 31

    R. Femmer, A. Mani, and M. Wessling, Sci. Rep. 5, 11583 (2015). https://doi.org/10.1038/srep11583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    M. Wang and C.-J. Gao, Recent Pat. Chem. Eng. 4 (2011).

  33. 33

    L. Ge, B. Wu, D. Yu, et al., Chin. J. Chem. Eng. 35, 1025 (2017).

    Article  Google Scholar 

  34. 34

    S. Shkirskaya, M. Kolechko, and N. Kononenko, Curr. Appl. Phys. 15, 1587 (2015). https://doi.org/10.1016/j.cap.2015.09.017

    Article  Google Scholar 

  35. 35

    T. Sata and R. Izuo, J. Membr. Sci. 45, 209 (1989).

    CAS  Article  Google Scholar 

  36. 36

    D. V. Golubenko, Yu. A. Karavanova, S. S. Melnikov, et al., J. Membr. Sci. 563, 777 (2018). https://doi.org/10.1016/j.memsci.2018.06.024

    CAS  Article  Google Scholar 

  37. 37

    I. Stenina, D. Golubenko, V. Nikonenko, and A. Yaroslavtsev, Int. J. Mol. Sci. 21, 5517 (2020). https://doi.org/10.3390/ijms21155517

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  38. 38

    S. T. Hwang and K. Kammermeyer, Techniques of Chemistry, vol. 7 : Membranes in Separation (Wiley, New York, 1975).

  39. 39

    V. I. Zabolotsky and V. V. Nikonenko, Transport of Ions in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  40. 40

    F. Helfferich, Ion Exchange (McGraw-Hill, New York, 1962).

    Google Scholar 

  41. 41

    B. P. Nikol’skii and V. I. Paramonova, Usp. Khim. 8, 1535 (1939).

    Google Scholar 

  42. 42

    H. P. Gregor and D. M. Westone, J. Am. Chem. Soc. 86, 5689 (1964).

    CAS  Article  Google Scholar 

  43. 43

    R. Schlögl, Z. Phys. Chem. 1, 305 (1954).

    Article  Google Scholar 

  44. 44

    R. Schlögl, Ber. Busenges. Phys. Chem. 82, 225 (1978).

    Article  Google Scholar 

  45. 45

    F. Conti and G. Eisenman, Biophys. J. 5, 511 (1965).

  46. 46

    K. Kontturri and H. Pajari, Sep. Sci. Technol. 21, 1089 (1986).

    Article  Google Scholar 

  47. 47

    A. M. Peers, Discuss. Faraday Soc. 21, 124 (1956).

    Google Scholar 

  48. 48

    A. M. Peers, J. Appl. Chem. 8, 59 (1958).

    CAS  Article  Google Scholar 

  49. 49

    A. Di Benedetto and E. Lightfoot, Ind. and Eng. Chem. 50, 691 (1958).

    CAS  Article  Google Scholar 

  50. 50

    Y. Oren and A. Ligtan, J. Phys. Chem. 78, 1805 (1974).

  51. 51

    A. T. Di Benedetto and E. N. Lightfoot, A. I. Ch. E. J. 8, 79 (1962).

  52. 52

    V. V. Nikonenko, V. I. Zabolotskii, and K. A. Lebedev, Elektrokhimiya 15, 1494 (1979).

    CAS  Google Scholar 

  53. 53

    V. V. Nikonenko, V. I. Zabolotskii, and K. A. Lebedev, Elektrokhimiya 16, 555 (1980).

    Google Scholar 

  54. 54

    K. A. Lebedev, V. V. Nikonenko, V. I. Zabolotskii, and N. P. Gnusin, Elektrokhimiya 22, 638 (1986).

    CAS  Google Scholar 

  55. 55

    L. Hou, J. Pan, D. Yu, B. Wu, et al., J. Mem. Sci. 528, 243 (2017).

    CAS  Article  Google Scholar 

  56. 56

    V. I. Zabolotsky, J. A. Manzanares, V. V. Nikonenko, and K. A. Lebedev, Desalination 147, 387 (2002).

    CAS  Article  Google Scholar 

  57. 57

    V. V. Nikonenko, V. I. Zabolotskii, and K. A. Lebedev, Elektrokhimiya 32, 258 (1996).

    Google Scholar 

  58. 58

    V. I. Zabolotskii, K. A. Lebedev, and I. V. Orel, Russ. J. Electrochem. 39, 1130 (2003). https://doi.org/10.1023/A:1026187823767

    CAS  Article  Google Scholar 

  59. 59

    M. Vaselbehagh, H. Karkhanechi, R. Takagi, and H. Matsuy, J. Membr. Sci. 490, 301 (2015).https://doi.org/10.1016/j.memsci.2015.04.014

    CAS  Article  Google Scholar 

  60. 60

    T. Luo, F. Roghmans, and M. Wesslin, J. Membr. Sci. 597, 117645 (2020). https://doi.org/10.1016/j.memsci.2019.117645

    CAS  Article  Google Scholar 

  61. 61

    T. Sata, J. Membr. Sci. 167, 1 (2000). https://doi.org/10.1016/S0376-7388(99)00277-X

    CAS  Article  Google Scholar 

  62. 62

    F. G. Donnan, Chem. Rev. 1, 73 (1924).

    CAS  Article  Google Scholar 

  63. 63

    V. F. Gaiduk, Zhurn. Vychisl. Matem. Matem. Fiziki 24, 504 (1984).

    Google Scholar 

  64. 64

    I. S. Bakhvalov, N. P. Zhidkov, and G. I. Kobel’kov, Computational Methods (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  65. 65

    K. Lebedev, P. Ramirez, S. Mafe, and J. Pellicer, Lengmuir 16, 9941 (2000).

    CAS  Article  Google Scholar 

  66. 66

    V. I. Zabolotsky, A. R. Achoh, K. A. Lebedev, and S. S. Melnikov, J. Membr. Sci. 608, 118152 (2020). https://doi.org/10.1016/j.memsci.2020.118152

    CAS  Article  Google Scholar 

  67. 67

    Nafion tm membranes and dispersions, www.chemours.com/ Nafion/en_US/index.html

  68. 68

    V. I. Zabolotskii, S. S. Mel’nikov, and N. V. Shel’deshov, RF Patent, No. 2516160.

  69. 69

    V. I. Zabolotskii, N. V. Shel’deshov, and M. V. Sharafan, Russ. J. Electrochem. 42, 1345 (2006).

    CAS  Article  Google Scholar 

  70. 70

    V. G. Levich, Physicochemical Hydrodynamics (Fizmatgizb, Moscow, 1959) [in Russian].

    Google Scholar 

  71. 71

    E. R. Nightingale, J. Phys. Chem. 109, 1381 (1959). https://doi.org/10.1021/j150579a011

    Article  Google Scholar 

  72. 72

    V. I. Zabolotskii, N. P. Gnusin, and G. M. Sheretova, Zh. Fiz. Khim. 59, 2467 (1985).

    CAS  Google Scholar 

  73. 73

    N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, J. Colloid Interface Sci. 139, 3 (2008).

    CAS  Article  Google Scholar 

  74. 74

    O. A. Demina, S. A. Shkirskaya, N. A. Kononenko, and E. V. Nazyrova, Russ. J. Electrochem. 52, 291 (2016). https://doi.org/10.1134/S1023193516040030

    CAS  Article  Google Scholar 

  75. 75

    V. N. Afanas’ev and E. Yu. Tyunina, Russ. J. Gen. Chem. 74, 673 (2004).

    Article  Google Scholar 

  76. 76

    A. A. Zavitsas, J. Phys. Chem. 109, 20636 (2005). https://doi.org/10.1021/jp053909i

    CAS  Article  Google Scholar 

  77. 77

    A. N. Filippov, N. A. Kononenko, I. V. Falina, E. V. Titskaya, et al., Colloid J. 82, 81 (2020). https://doi.org/10.1134/S1061933X20010056

    CAS  Article  Google Scholar 

  78. 78

    S. A. Mareev, E. Evdochenko, M. Wessling, et al., J. Mem. Sci. 603, 118010 (2020). https://doi.org/10.1016/j.memsci.2020.118010

    CAS  Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, research project no. 19-13-00339.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. R. Achoh.

Additional information

Translated by A. Kukharuk

APPENDICES

APPENDICES

Appendix 1 . Mathematical Algorithm for Solving the Boundary Value Problem

Consider two systems. The first system (α = 1) includes Ca2+ (1), Na+ (2) and Cl (3) ions \(\left( {j = 1,2,3} \right)\); and the second one (α = 2) includes \({\text{SO}}_{{\text{4}}}^{{{\text{2}}-}}\) (1), \({\text{NO}}_{{\text{3}}}^{-}\) (2), and Na+ (3) ions. The membrane (III) and modifying layer (II) of the first system have the same charge of their ion-exchanging matrices (MK-40/MF-4SK). In the second system, the polymer matrix of the initial membrane and that of the modifying layer have opposite charges (MA-41/MF-4SK).

We can formulate a boundary value problem that embraces both the first and the second system, considering that the competing ions in the two systems function as counterions with respect to the initial membrane matrix and the modifying layer of the first system, whereas in the second system, they function as coions.

Transport equations are formulated as Nernst–Planck equations in the steady state form. It is assumed that the electroneutrality condition holds and that thermodynamic equilibrium is maintained locally, i.e., at the interfaces. The effects that manifest at high current densities, dissociation of water molecules, appearance of space charge layer near the interfaces, and the exaltation effect, were not considered. Let the electrical current with density i flow normally to the surface of the modified membrane that is interposed between two identical electrolyte solutions I and IV with ion concentrations \(c_{j}^{{\text{I}}} = c_{j}^{{{\text{IV}}}} = c_{j}^{0}{\text{.}}\) Competing ionic species 1 and 2 are counterions with respect to the ion-exchange matrix of the membrane, and ionic species with j = 3 is the coion. Let us choose a space coordinate system so that its origin coincides with the left boundary of diffusion layer I (x = 0). The width of the entire system is indicated by \(l = \delta + \tilde {d} + \bar {d} + \delta .\)

A boundary value problem for three ions (\(j = 1,2,3\)) with concentrations \({{c}_{1}}\left( x \right),\) \({{c}_{2}}\left( x \right)\) and \({{c}_{3}}\left( x \right)\) in four layers (\(m = {\text{I}},{\text{II}},{\text{III}},{\text{IV}}\)) is formulated in a scaled form. The Nernst–Planck equation holds in all four layers:

$$\begin{gathered} {{j}_{j}} = {{\left[ { - {{D}_{j}}\left( {\frac{{d{{c}_{j}}}}{{dx}} + \frac{{{{z}_{j}}F}}{{RT}}{{c}_{j}}\frac{{d\varphi }}{{dx}}} \right)} \right]}_{m}}, \hfill \\ j = 1,{{\;}}2,{{\;}}3,\,\,\,\,{\text{\;\;}}m = {\text{I}},{\text{II}},{\text{III}}{\text{,IV}} \hfill \\ \end{gathered} $$
(1.1)

along with electroneutrality condition

$${{\left[ {\mathop \sum \limits_{i = 1}^3 {{z}_{i}}{{c}_{i}}} \right]}_{m}} + {{Q}_{m}} = 0,\,\,\,\,m = {\text{I}},{\text{II}},{\text{III}},{\text{IV}}.$$
(1.2)

For the diffusion layers, \({{Q}_{{\text{I}}}} = {{Q}_{{{\text{IV}}}}} = 0,\) and for the modifying film and the membrane, \(\tilde {Q} = {{Q}_{{{\text{II}}}}}\) and \(\bar {Q} = {{Q}_{{{\text{III}}}}}.\) For the whole system, the condition for the flow of electrical current is

$$\sum\limits_{j = 1}^3 {{{z}_{j}}{{j}_{j}}} = \frac{i}{{F{{\;}}}}.$$
(1.3)

Local thermodynamic equilibrium is assumed to be maintained at the interfaces. The imposition of condition of local thermodynamic equilibrium (continuity of the electrochemical potential) for all the interfaces in the electromembrane system leads to six boundary conditions. For the first diffusion layer I/modifying layer II boundary, we write

$${{\left( {\frac{{c_{{1,{{\;}}s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{j}}}}} \right. \kern-0em} {{{z}_{j}}}}}}}}{{c_{{j,s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{i}}}}} \right. \kern-0em} {{{z}_{i}}}}}}}}} \right)}_{{m = {\text{II}}}}} = k_{{1,j}}^{{{\text{I}}{\text{,II}}}}{{\left( {\frac{{c_{{1,{\text{\;\;}}s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{j}}}}} \right. \kern-0em} {{{z}_{j}}}}}}}}{{c_{{j,s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{i}}}}} \right. \kern-0em} {{{z}_{i}}}}}}}}} \right)}_{{m = {\text{I}}}}},\,\,\,\,j = 2,3.$$
(1.4)

For the modifying layer II/membrane III boundary,

$${{\left( {\frac{{c_{{1,{{\;}}s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{j}}}}} \right. \kern-0em} {{{z}_{j}}}}}}}}{{c_{{j,s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{i}}}}} \right. \kern-0em} {{{z}_{i}}}}}}}}} \right)}_{{m = {\text{III}}}}} = k_{{1,{{\;}}j}}^{{{\text{II}}{\text{,III}}}}{{\left( {\frac{{c_{{1,s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{j}}}}} \right. \kern-0em} {{{z}_{j}}}}}}}}{{c_{{j,s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{i}}}}} \right. \kern-0em} {{{z}_{i}}}}}}}}} \right)}_{{m = {\text{II}}}}},\,\,\,\,j = 2,3.$$
(1.5)

For the membrane III/second diffusion layer IV,

$${{\left( {\frac{{c_{{1,s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{j}}}}} \right. \kern-0em} {{{z}_{j}}}}}}}}{{c_{{j,s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{i}}}}} \right. \kern-0em} {{{z}_{i}}}}}}}}} \right)}_{{m = {\text{III}}}}} = k_{{1,j}}^{{{\text{IV}}{\text{,III}}}}{{\left( {\frac{{c_{{1,s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{j}}}}} \right. \kern-0em} {{{z}_{j}}}}}}}}{{c_{{j,s}}^{{{1 \mathord{\left/ {\vphantom {1 {{{z}_{i}}}}} \right. \kern-0em} {{{z}_{i}}}}}}}}} \right)}_{{m = {\text{IV}}}}},\,\,\,\,j = 2,3,$$
(1.6)

where \({{\left( {{{c}_{{j,s}}}} \right)}_{m}}\) is the ion concentration at the interfaces; and \(k_{{1,j}}^{{{\text{I}}{\text{,II}}}},\) \(k_{{1,j}}^{{{\text{II}}{\text{,III}}}}\) and \(k_{{1,j}}^{{{\text{III}}{\text{,IV}}}}\) are local thermodynamic equilibrium constants at the diffusion layer I/modifying layer II, modifying layer II/substrate membrane III, and substrate membrane III/diffusion layer IV interfaces, respectively.

The thermodynamic equilibrium constant at the modifying layer II/membrane III interface is expressed through two other equilibrium constants:

$$k_{{1,j}}^{{{\text{II}}{\text{,III}}}} = \frac{{k_{{1,j}}^{{{\text{I}}{\text{,II}}}}}}{{k_{{1,j}}^{{{\text{III}}{\text{,IV}}}}}}{\text{.}}$$
(1.7)

For counterions j = 1 and j = 2, boundary conditions (4)–(6) are described with an ion-exchange constant [41]; and for counterion j = 1 and coion j = 3, they are described by the Donnan equation [62].

The concentrations of all ionic species are defined at the outer boundaries of diffusion layers I (x = 0) and IV (x = l), which is a consequence of constancy of the ion concentrations in the solution bulk:

$${{c}_{j}}\left( 0 \right) = c_{j}^{0},\,\,\,\,{{c}_{j}}\left( l \right) = c_{j}^{0}.$$
(1.8)

In Eqs. (1)(8), \(c_{j}^{0}\) is the molar concentration of the j-th ionic species in the bulk of the solution on the left and right boundaries of the considered system; \({{j}_{j}}\) is flux density of the j-th ionic species; \({{\left[ {{{c}_{{j,s}}}} \right]}_{m}}\) are the boundary concentrations of the j-th ionic species in the m-th layer; \({{z}_{j}}\) is the charge number of the j-th ionic species; \({{\left[ {{{D}_{j}}} \right]}_{m}}\) are the diffusion coefficients of the j-th ionic species in the m-th layer; φ is the electric potential; \(l = 2\delta + \tilde {d} + \bar {d}\) is the length of a multilayer system; \(\delta \) is the thickness of diffusion layers; \({{\;}}\tilde {d}\) is the thickness of the modifying layer; \(\bar {d}\) is the thickness of the substrate membrane; and \(F,\) \(R\) and \(T\) have their conventional meaning.

Simultaneous Eqs. (1) with additional conditions (2) and (3) and boundary value conditions (4)–(8) make up a boundary value problem describing a four-layer membrane system.

This boundary value problem has a physical meaning if the current does not exceed its limiting value \(\left( {i \leqslant {{i}_{{{\text{lim}}}}}} \right).\) For thickness of modifying layer \(\tilde {d} = 0,\) this problem transforms into a boundary value problem describing a three-layer system with an isotropic membrane [54, 57].

To solve the problem for the four-layer membrane system, we used parallel shooting method [6365] that we modified to use for solving multilayer boundary value problem (1)–(8). The procedure for solving this boundary value problem was described in [66].

Appendix 2

A concentration dependence of diffusion flux j obtained experimentally was used to calculate integral coefficient P of diffusional permeability of the membrane. The concentration dependences of integral diffusional permeability coefficients \({{P}_{j}}\) of the considered membrane in sodium sulfate and sodium nitrate solutions are shown in the figure in log–log coordinates.

Figure. Log–log plot of concentration dependences of the integral coefficient of diffusional permeability for MF-4SK in (1) Na2SO4 and (2) NaNO3 solutions.

To determine the diffusion coefficient of \({\text{SO}}_{{\text{4}}}^{{{\text{2}} - }}\) ions in a MF-4SK membrane placed in a Na2SO4 solution (γ = 1) and the diffusion coefficients of \({\text{NO}}_{{\text{3}}}^{ - }\) ions in a NaNO3 solution (γ = 2), let us write the following equation for diffusion flux of electrolyte from a solution with concentration \({{c}^{0}}\) into water (\(c\) = 0) across a membrane with thickness \(d\):

$$J = - {{P}_{{{\gamma }}}}{{\;}}\frac{{\delta c}}{d} = - {{P}_{{{\gamma }}}}\frac{{{{c}^{0}}}}{d},\,\,\,\,{\text{ }}(\gamma = {\text{1}},{\text{2}}),$$
(2.1)

where \({{P}_{{{\gamma }}}}\) is the integral diffusional permeability of membrane, J = \(\left| {{{z}_{i}}{{j}_{i}}{{\;}}} \right|\) is the electrolyte flux, c = \(\left| {{{z}_{i}}j{{c}_{i}}{{\;}}} \right|\) is the equivalent solution concentration, \(\Delta c = {{c}^{{{\text{II}}}}} - {{c}^{{\text{I}}}},\) is the drop in concentration across the film, \(d\) is the film thickness, and \({{c}^{{\text{I}}}} = 0.\)

Differential diffusional permeability \(P_{{{\gamma }}}^{{\text{*}}}\) is defined by formula

$$J = - P_{{{\gamma }}}^{{\text{*}}}{{\;}}\frac{{dc}}{{dx{{\;}}}}.$$
(2.2)

The integral and differential permeability coefficients are related by equation

$$P_{{{\gamma }}}^{{\text{*}}}{{\;}} = {{P}_{{{\gamma }}}} + c\frac{{d{{P}_{{{\gamma }}}}}}{{dc}}{{\;}}.$$
(2.3)

To simplify calculations, we seek a solution in the exponential form:

$${{P}_{{{\gamma }}}} = {{A}_{{{\gamma }}}}{{c}^{{{{{{\beta }}}_{{{\gamma }}}}}}}.$$
(2.4)

From Eqs. (3) and (4), we get:

$$P_{{{\gamma }}}^{{\text{*}}}{{\;}} = \left( {1 + {{A}_{{{\gamma }}}}} \right){{P}_{{{\gamma }}}}.$$
(2.5)

Using membrane permeability \(P_{k}^{{\text{*}}}\) in type γ = 1, 2 electrolytes, we can estimate diffusion coefficients \({{\tilde {D}}_{j}},\) and \(\overline {{{D}_{j}}} \) of coion species j = 1, 2. For this, we use the notion of a virtual solution. According to it, \(P_{k}^{{\text{*}}}\) can be expressed through Onsager’s kinetic coefficients by formula

$$P_{j}^{{\text{*}}}{{\;}} = \frac{{\left| {{{z}_{j}}} \right|\left| {{{z}_{3}}} \right|\left( {\left| {{{z}_{j}}} \right| + \left| {{{z}_{3}}} \right|} \right)L_{j}^{{\text{*}}}L_{3}^{{\text{*}}}RT}}{{\left( {z_{j}^{2}L_{j}^{{\text{*}}} + z_{3}^{2}L_{3}^{{\text{*}}}} \right)c}}{{\;}},$$
(2.6)

where γ = j = 1 for SO4 coions, γ = j = 2 for NO3 coions, and j = 3 for Na+ counterions in the two electrolytes. Taking into account that \(L_{3}^{{\text{*}}} \gg L_{j}^{{\text{*}}}\), we arrive at the approximate formula:

$$P_{j}^{{\text{*}}}{{\;}} \approx \frac{{\left| {{{z}_{i}}} \right|\left( {\left| {{{z}_{j}}} \right| + \left| {{{z}_{3}}} \right|} \right)L_{j}^{{\text{*}}}RT}}{{\left| {{{z}_{3}}} \right|c}},$$
(2.7)

where \(L_{j}^{{\text{*}}} = \frac{{D_{j}^{{\text{*}}}c_{j}^{{\text{*}}}}}{{RT}}\) = \(\frac{{D_{j}^{{\text{*}}}c}}{{\left| {{{z}_{i}}} \right|RT}},\) \(j = 1,2.\)

Then, the diffusion coefficients for the modifying layer are calculated by the formula:

$$D_{j}^{{\text{*}}} = {{\left[ {\frac{{P_{j}^{{\text{*}}}}}{{\left( {1 + \left| {\frac{{{{z}_{i}}}}{{{{z}_{3}}}}} \right|} \right)}}} \right]}_{{c = {{c}_{0}}}}} = {{\left[ {\frac{{{{P}_{i}}\left( {1 + {{{{\beta }}}_{i}}} \right)}}{{\left( {1 + \left| {\frac{{{{z}_{i}}}}{{{{z}_{3}}}}} \right|} \right)}}} \right]}_{{c = {{c}_{0}}}}}.$$
(2.8)

The values for diffusion coefficients of the MF-4SK membrane were determined for concentration c0 = 0.03 mol/L.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Achoh, A.R., Zabolotsky, V.I., Lebedev, K.A. et al. Electrochemical Properties and Selectivity of Bilayer Ion-Exchange Membranes in Ternary Solutions of Strong Electrolytes. Membr. Membr. Technol. 3, 52–71 (2021). https://doi.org/10.1134/S2517751621010029

Download citation

Keywords:

  • ion-exchange membrane
  • specific selectivity
  • modification
  • current–voltage curve
  • limiting current
  • mathematical model