Skip to main content
Log in

Mobility of Cations and Water Molecules in Sulfocation-Exchange Membranes Based on Polyethylene and Sulfonated Grafted Polystyrene

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The main patterns of the hydration of sulfo groups, the translational mobility of water molecules, alkali metal cations, and ionic conductivity in sulfocation-exchange membranes (MSC) based on polyethylene and sulfonated grafted polystyrene have been investigated using NMR and impedance spectroscopy techniques. It has been shown that at moisture contents λ < 4 (λ is the number of water molecules per sulfo group) the H+ counterions in the membranes form diaquahydrogen ions \({{{\text{H}}}_{{\text{5}}}}{\text{O}}_{{\text{2}}}^{ + }{\text{.}}\) In the temperature range below 0°C at λ < 12, water molecules retain high mobility and do not form the ice phase. Water molecules diffusion coefficients (for the H+ form, the average diffusion coefficient of water molecules and acidic protons) and first for ion-exchange systems, and the diffusion coefficients of counterions Li+, Na+, and Cs+ have been measured by pulsed field gradient 1H, 7Li, 23Na, and 133Cs NMR spectroscopy. In MSC membranes in contact with water, the self-diffusion coefficients of cations increase in the Li+ < Na+ < Cs+ series. The cation conductivity values are in the same Li+ < Na+ < Cs+\( \ll \) H+ sequence. The cation conductivity values calculated from the self-diffusion coefficients based on the Nernst–Einstein equation are essentially higher than the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. C. Hindman, J. Chem. Phys. 36, 1000 (1962).

    Article  CAS  Google Scholar 

  2. P. S. Knapp, R. O. Waite, and E. R. Malinowski, J. Chem. Phys. 49, 5459 (1968).

    Article  CAS  Google Scholar 

  3. R. W. Creekmore and C. N. Reilley, J. Phys. Chem. 73, 1563 (1969).

    Article  CAS  Google Scholar 

  4. E. R. Malinowski, P. S. Knapp, and B. Feuer, J. Chem. Phys. 45, 4274 (1966).

    Article  CAS  Google Scholar 

  5. R. W. Creekmore and C. N. Reilley, Anal. Chem. 42, 570 (1970).

    Article  CAS  Google Scholar 

  6. T. E. Gough, H. D. Sharma, and N. Subramanian, Can. J. Chem. 48, 917 (1970).

    Article  CAS  Google Scholar 

  7. V. G. Khutsishvili, Yu. S. Bogachev, V. I. Volkov, A. I. Serebryanskaya, N. N. Shapet’ko, S. F. Timashev, and M. I. Orman, Russ. J. Phys. Chem. 57, 2524 (1983).

    CAS  Google Scholar 

  8. V. I. Volkov, G. K. Saldadze, R. I. Tagirova, L. V. Kropotov, V. G. Khutsishvili, and N. N. Shapet’ko, Russ. J. Phys. Chem. 64, 1005 (1989).

    Google Scholar 

  9. G. K. Saldadze, R. I. Tagirova, V. I. Volkov, and S. A. Chizhanov, Russ. J. Phys. Chem. 67, 1818 (1993).

    CAS  Google Scholar 

  10. A. V. Chernyak, S. V. Vasil’ev, I. A. Avilova, and V. I. Volkov, Appl. Magn. Reson. (2019, in press). https://doi.org/10.1007/s00723-019-1111-9

    Article  CAS  Google Scholar 

  11. R. Iwamoto, K. Oguro, M. Sato, and Y. Iseki, J. Phys. Chem. B 106, 6973 (2002).

    Article  CAS  Google Scholar 

  12. L. Maldonado, J.-C. Perrin, J. Dillet, and O. Lottin, J. Membr. Sci. 389, 43 (2012).

    Article  CAS  Google Scholar 

  13. S.-Y. Jeong and O.-H. Han, Bul. Korean Chem. Soc. 30, 1559 (2009).

    Article  CAS  Google Scholar 

  14. A. Guillermo, G. Gebel, H. Mendil-Jakani, and E. Pinton, J. Phys. Chem. 113, 6710 (2009).

    Article  CAS  Google Scholar 

  15. Z. Ma, R. Jiang, M. E. Myers, E. L. Thompson, and C. S. Gittleman, J. Mater. Chem. 21, 9302 (2011).

    Article  CAS  Google Scholar 

  16. P. Batamack and J. Fraissard, Catal. Lett. 49, 129 (1997).

    Article  CAS  Google Scholar 

  17. N. J. Bunce, S. J. Sondheimer, and C. A. Fyfe, Macromolecules 19, 333 (1986).

    Article  CAS  Google Scholar 

  18. V. G. Khutsishvili, Yu. S. Bogachev, V. I. Volkov, B. V. Tarasova, N. A. Dreiman, N. N. Shapet’ko, and S. F. Timashev, Russ. J. Phys. Chem. 58, 2633 (1984).

    CAS  Google Scholar 

  19. V. I. Volkov, E. A. Sidorenkova, S. F. Timashev, and S. G. Lakeev, Russ. J. Phys. Chem. 67, 914 (1993).

    Google Scholar 

  20. V. I. Volkov and A. A. Marinin, Russ. Chem. Rev. 82, 248 (2013).

    Article  Google Scholar 

  21. V. I. Volkov, S. L. Vasilyak, I.-W. Park, H. J. Kim, H. Ju, E. V. Volkov, and S. H. Choh, Appl. Magn. Reson. 25, 43 (2003).

    Article  CAS  Google Scholar 

  22. A. Kusoglu and A. Z. Weber, Chem. Rev. 117, 987 (2017).

    Article  CAS  Google Scholar 

  23. Q. Zhao, P. Majsztrik, and J. Benziger, J. Phys. Chem. 115, 2717 (2011).

    Article  CAS  Google Scholar 

  24. T. A. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, and S. Gottesfeld, J. Electrochem. Soc. 140, 1041 (1993).

    Article  CAS  Google Scholar 

  25. T. A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld, J. Electrochem. Soc. 140, 1981 (1993).

    Article  CAS  Google Scholar 

  26. M. Cappadonia, J. W. Erning, S. M. S. Niaki, and U. Stimming, Solid State Ionics 77, 65 (1995).

    Article  CAS  Google Scholar 

  27. I. Nicotera, L. Coppola, C. O. Rossi, M. Youssry, and G.A. Ranieri, J. Phys. Chem. B 113, 13935 (2009).

    Article  CAS  Google Scholar 

  28. A. L. Moster and B. S. Mitchell, J. Appl. Polym. Sci. 113, 243 (2009).

    Article  CAS  Google Scholar 

  29. E. L. Thompson, T. W. Capehart, T. J. Fuller, and J. Jorne, J. Electrochem. Soc. 153, A2351 (2006).

    Article  CAS  Google Scholar 

  30. E. Y. Safronova, D. V. Golubenko, N. V. Shevlyakova, M. G. D’yakova, V. A. Tverskoi, L. Dammak, D. Grande, and A. B. Yaroslavtsev, J. Membr. Sci. 515, 196 (2016).

    Article  CAS  Google Scholar 

  31. P. Jannasch and E. A. Weiber, Macromol. Chem. Phys. 217, 1108 (2016).

    Article  CAS  Google Scholar 

  32. K. Oh, K. Ketpang, H. Kim, and S. Shanmugam, J. Membr. Sci. 507, 135 (2016).

    Article  CAS  Google Scholar 

  33. Y. Marcus, J. Chem. Soc., Faraday Trans. 89, 713 (1993).https://doi.org/10.1017/CBO9781107415324.004

    Article  CAS  Google Scholar 

  34. A. B. Yaroslavtsev, Russ. Chem. Rev. 85, 1255 (2016).

    Article  CAS  Google Scholar 

  35. D. V. Golubenko, E. Y. Safronova, A. B. Ilyin, N. V. Shevlyakova, V. A. Tverskoi, L. Dammak, D. Grande, and A. B. Yaroslavtsev, Mater. Chem. Phys. 197, 192 (2017).

    Article  CAS  Google Scholar 

  36. E. Yu. Voropaeva, E. A. Sanginov, V. I. Volkov, A. A. Pavlov, A. S. Shalimov, I. A. Stenina, and A. B. Yaroslavtsev, Russ. J. Inorg. Chem. 53, 1536 (2008).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-08-00423 A). The studies of ionic conductivity were performed using equipment at the Center for Collective Use of the Kurnakov Institute, functioning with the support of the State Assignment of the Kurnakov Institute in the field of fundamental scientific research.

NMR measurements were performed using the equipment of the Center for Collective Use of the Institute of Problems of Chemical Physics with the support of the State Assignment of the Institute (state registration nos. 0089-2019-0010 and 0089-2019-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Volkov.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, V.I., Chernyak, A.V., Golubenko, D.V. et al. Mobility of Cations and Water Molecules in Sulfocation-Exchange Membranes Based on Polyethylene and Sulfonated Grafted Polystyrene. Membr. Membr. Technol. 2, 54–62 (2020). https://doi.org/10.1134/S2517751620010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751620010096

Keywords:

Navigation