Skip to main content
Log in

Experimental Evaluation of the Efficiency of Membrane Cascades Type of “Continuous Membrane Column” in the Carbon Dioxide Capture Applications

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The performance of a three-module single-compressor membrane cascade of the “continuous membrane column” type in separation of a ternary gas mixture close in composition to power plant flue gas (N2/O2/CO2 = 84/9.6/6.4 vol %) has been experimentally evaluated. Within the scope of the study, the operation of each of the sections of the device, stripping and enrichment, has been analyzed and the relations between the compositions of gas stream taken out of these sections and the ratio of flow rate of these streams to the feed flow rate of the membrane cascade have been determined. In addition, the effectiveness of carbon dioxide capture has been assessed. The CO2 purity achieved was as high as 91 vol %. The prospects of using the device under study for capturing carbon dioxide from power plant flue gas have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. P. A. Smithson, Int. J. Climatol. 22, 1144 (2002).

    Article  Google Scholar 

  2. G. T. Rochelle, Science, 325, 1652 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. M. M. F. Hasan, et al., Ind. Eng. Chem. Res. 51, 15665 (2012).

    Article  CAS  Google Scholar 

  4. X. Zhang, et al., Int. J. Greenhouse Gas Control 27, 289 (2014).

    Article  CAS  Google Scholar 

  5. J. D. Figueroa, et al., Int. J. Greenhouse Gas Control 2, 9 (2008).

    Article  CAS  Google Scholar 

  6. Cost and Performance Baseline for Fossil Energy Plants, vol. 1: Bituminous Coal and Natural Gas to Electricity, Revision 2 (RDS, NETL, 2019).

  7. B. Belaissaoui and E. Favre, Oil Gas Sci. Technol. 69, 1005 (2014).

    Article  Google Scholar 

  8. D. F. Sanders, et al., Polymer 54, 4729 (2013).

    Article  CAS  Google Scholar 

  9. A. Skorek-Osikowska, J. Kotowicz, and K. Janusz-Szymanska, Energy Fuels 26, 6509 (2012).

    Article  CAS  Google Scholar 

  10. L. Wang, J. Memb. Sci. 383, 170 (2011).

    Article  CAS  Google Scholar 

  11. T. Minh, et al., Ind. Eng. Chem. Res. 45, 2546 (2006).

    Article  CAS  Google Scholar 

  12. P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res. 48, 4638 (2009).

    Article  CAS  Google Scholar 

  13. I. V. Vorotyntsev, P. N. Drozdov, G. M. Mochalov, N. N. Smirnova, and S. S. Suvorov, Russ. J. Phys. Chem. 80, 2020 (2006).

    Article  CAS  Google Scholar 

  14. S. R. Venna and M. A. Carreon, Chem. Eng. Sci. 124, 3 (2015).

    Article  CAS  Google Scholar 

  15. H. Vinh-Thang and S. Kaliaguine, Chem. Rev. 113, 4980 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. P. Luis, T. Van Gerven, and B. Van der Bruggen, Prog. Energy Combust. Sci. 38, 419 (2012).

    Article  CAS  Google Scholar 

  17. I. M. Davletbaeva, et al., RSC Adv. 6, 111109 (2016).

    Article  CAS  Google Scholar 

  18. A. I. Akhmetshina, et al., J. Chem. Eng. Data, 63, 1896 (2018).

    Article  CAS  Google Scholar 

  19. A. I. Akhmetshina, et al., Sep. Purif. Technol, 176, 92 (2017).

    Article  CAS  Google Scholar 

  20. A. Hussain, S. Farrukh, and F. T. Minhas, Energy Fuels 29, 6664 (2015).

    Article  CAS  Google Scholar 

  21. X. He and M.-B. Hägg, Membranes 2, 706 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Z. Dai, et al., J. Memb. Sci. 497, 1 (2016).

    Article  CAS  Google Scholar 

  23. V. M. Vorotyntsev, et al., Desalination, 200, 232 (2006).

    Article  CAS  Google Scholar 

  24. V. M. Vorotyntsev, P. N. Drozdov, I. V. Vorotyntsev, and E. S. Belyaev, Pet. Chem. 51, 595 (2011).

    Article  CAS  Google Scholar 

  25. R. W. Baker, Ind. Eng. Chem. Res. 41, 1393 (2002).

    Article  CAS  Google Scholar 

  26. T. Brinkmann, et al., Int. J. Greenhouse Gas Control 39, 194 (2015).

    Article  CAS  Google Scholar 

  27. A. Hussain and M.-B. Hägg, J. Memb. Sci. 359, 140 (2010).

    Article  CAS  Google Scholar 

  28. M.-B. Hägg and A. Lindbråthen, Ind. Eng. Chem. Res. 44, 7668 (2005).

    Article  CAS  Google Scholar 

  29. S. Tessendorf, R. Gani, and M. L. Michelsen, Chem. Eng. Sci. 54, 943 (1999).

    Article  CAS  Google Scholar 

  30. J. Fárková, J. Memb. Sci. 64, 103 (1991).

    Article  Google Scholar 

  31. L. Zhao, et al., J. Memb. Sci. 325, 284 (2008).

    Article  CAS  Google Scholar 

  32. L. Zhao, et al., Chem. Eng. Technol. 35, 489 (2012).

    Article  CAS  Google Scholar 

  33. A. A. Atlaskin, et al., J. Membr. Sci. 572, 92 (2019).

    Article  CAS  Google Scholar 

  34. V. Vorotyntsev and P. N. Drozdov, Sep. Purif. Technol. 22–23, 367 (2001).

    Article  Google Scholar 

  35. A. A. Atlaskin, M. M. Trubyanov, N. R. Yanbikov, M. V. Bukovsky, P. N. Drozdov, V. M. Vorotyntsev, and I. V. Vorotyntsev, Pet. Chem. 58, 508 (2018).

    Article  CAS  Google Scholar 

  36. R. M. Barrer and E. K. Rideal, Trans. Faraday Soc. 35, 628 (1939).

    Article  CAS  Google Scholar 

  37. H. A. Daynes, Proc. R. Soc. A Math. Phys. Eng. Sci. 97, 286 (1920).

  38. I. M. Davletbaeva, et al., Membranes 9, 42 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  39. A. A. Akhmetshina, et al., Membranes 6, 1 (2015).

    Article  CAS  Google Scholar 

  40. M. M. Trubyanov, et al., J. Membr. Sci. 530, 53 (2017).

    Article  CAS  Google Scholar 

  41. T. Merkel, et al., J. Memb. Sci. 191, 85 (2001).

    Article  CAS  Google Scholar 

  42. A. I. Akhmetshina, et al., Membranes 9, 1 (2019).

    Article  CAS  Google Scholar 

  43. V. M. Vorotyntsev, et al., J. Anal. Chem. 58, 156 (2003).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, grant no. 18-19-00453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Vorotyntsev.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlaskin, A.A., Trubyanov, M.M., Yanbikov, N.R. et al. Experimental Evaluation of the Efficiency of Membrane Cascades Type of “Continuous Membrane Column” in the Carbon Dioxide Capture Applications. Membr. Membr. Technol. 2, 35–44 (2020). https://doi.org/10.1134/S2517751620010023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751620010023

Keywords:

Navigation