Advertisement

Review Journal of Chemistry

, Volume 4, Issue 2, pp 53–131 | Cite as

Propylphosphonic anhydride (T3P®): An expedient reagent for organic synthesis

  • Anirudha A. Waghmare
  • Rama Mohan Hindupur
  • Hari N. Pati
Article

Abstract

The present review article focuses on the recent advancements in amide and peptide coupling reactions of racemization-prone substrates using n-propylphosphonic anhydride (T3P). It summarizes its utility in the preparation of various carboxylic acid derivatives including esters, azides, hydroxamates, thiohydroxamates, carbamates, Weinreb amides, etc. Besides, its role in a variety of organic functional group transformations (e.g. conversion of aldoximes and ketoximes into nitriles and amides, oxidation of alcohols into olefins and corresponding carbonyl compounds, conversion of carboxylic acids and amides into nitriles and isonitriles, reduction of carboxylic acids into alcohols, acetalization and thioacetalization of aldehydes, conversion of N α-protected amino/peptide acids into thioacids, etc.) and in synthesis of heterocyclic compounds is also discussed.

Keywords

T3P (n-propylphosphonic anhydride) peptide coupling synthesis of heterocyclic compounds organic functional group transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mantzourani, E., Laimou, D., Matsoukas, M. T., and Tselios, T., Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 2008, vol. 7, no. 4, p. 294.Google Scholar
  2. 2.
    Vlieghe, P, Lisowski, V., Martinez, J., and Khrestchatisky, M., Drug Discovery Today 2010, vol. 15, no. 1/2, p. 40.Google Scholar
  3. 3.
    Miranda, L. P., and Alewood, P. F., Proceedings of the National Academy of Sciences, 1999, vol. 96, no. 4, p. 1181.Google Scholar
  4. 4.
    Montalbetti, C. -A. G. N., and Falque, V., Tetrahedron, 2005, vol. 61, no. 46, p. 10827.Google Scholar
  5. 5.
    Han, S. -Y., and Kim, Y.-A., Tetrahedron, 2004, vol. 60, no. 11, p. 2447.Google Scholar
  6. 6.
    Valeur, E., and Bradley, M., Chem. Soc. Rev., 2009, vol. 38, no. 2, p. 606.Google Scholar
  7. 7.
    Schwarz M., Synlett, 2000, no. 9, p. 1369.Google Scholar
  8. 8.
    Llanes Garcia, A. L., Synlett, 2007, no. 8, p. 1328.Google Scholar
  9. 9.
    Amitrano, R., Koch, P., Neuber, M., Neumann, D., Petrovic, P., Roos, M., and Vedder, C., Peptides for Youth: Advances in Experimental Medicine and Biology, 2009, vol. 611, p. 193.Google Scholar
  10. 10.
    Basavaprabhu, Vishwanatha, T. M., Panguluri, N. R., and Sureshbabu, V. V., Synthesis, 2013, vol. 45, no. 12, p. 1569.Google Scholar
  11. 11.
    Diemert, K., Kuchen, W., Poll, W., and Sandt, F., Eur. J. Inorg. Chem., 1998, vol. 1998, no. 3, p. 361.Google Scholar
  12. 12.
    Wissmann, H., Phosphorus and Sulfur, 1987, vol. 30, no. 3–4, p. 645.Google Scholar
  13. 13.
    Wissmann, H., and Kleiner, H. J., Angew. Chem. Int. Ed. Eng., 1980, vol. 19, no. 2, p. 133.Google Scholar
  14. 14.
    Diemert, K., Kuchen, W., Poll, W., and Sandt, F., Eur. J. Inorg. Chem., 1998, vol. 1998, no. 3, p. 361.Google Scholar
  15. 15.
    Jursic, B. S., and Zdravkovski, Z., Synth. Commun., 1993, vol. 23, no. 19, p. 2761.Google Scholar
  16. 16.
    Anderson, G. W., and Callahan, F. M., J. Am. Chem. Soc., 1958, vol. 80, no. 11, p. 2902.Google Scholar
  17. 17.
    Wissmann, H., and Kleiner, H. -J., US Patent 4331592, 1982.Google Scholar
  18. 18.
    Escher, R., and Bunning, P., Angew. Chem. Int. Ed. Eng., 1986, vol. 25, no. 3, p. 277.Google Scholar
  19. 19.
    Petit, S., Fruit, C., Bischoff, L., Org. Lett., 2010, vol. 12, no. 21, p. 4928.Google Scholar
  20. 20.
    Gahungu, M., Arguelles-Arias, A., Fickers, P., Zervosen, A., Joris, B., Damblon, C., Luxen, A., Bioorg. Med. Chem., 2013, vol. 21, no. 17, p. 4958.Google Scholar
  21. 21.
    Zhao, H., Wang, R., Chen, P., Gregg, B. T., Hsia, M. M., and Zhang, W., Org. Lett., 2012, vol. 14, no. 7, p. 1872.Google Scholar
  22. 22.
    Cimarosti, Z., Giubellina, N., Stabile, P., Laval, G., Tinazzi, F., Maton, W., Pachera, R., Russo, P., Moretti, R., Rossi, S., Cooke, J. W. B., and Westerduin, P., Org. Process Res. Dev. 2011, vol. 15, no. 6, p. 1287.Google Scholar
  23. 23.
    Patterson, D. E., Powers, J. D., LeBlanc, M., Sharkey, T., Boehler, E., Irdam, E., and Osterhout, M. H. Org. Process Res. Dev. 2009, vol. 13, no. 5, p. 900.Google Scholar
  24. 24.
    Kopach, M. E., Singh, U. K., Kobierski, M. E., Trankle, W. G., Murray, M. M., Pietz, M. A., Forst, M. B., Stephenson, G. A., Mancuso, V., Giard, T., Vanmarsenille, M., and DeFrance, T. Org. Process Res. Dev. 2009, vol. 13, no. 2, p. 209.Google Scholar
  25. 25.
    Boggs, S. D., Cobb, J. D., Gudmundsson, K. S., Jones, L. A., Matsuoka, R. T., Millar, A., Patterson, D. E., Samano, V., Trone, M. D., Xie, S., and Zhou, X. -M. Org. Process Res. Dev. 2007, vol. 11, no. 3, p. 539.Google Scholar
  26. 26.
    Knopp, M., Koser, S., and Schaefer, B., US Patent 6639081, 2003.Google Scholar
  27. 27.
    Vaid, R. K., Spitler, J., Boini, S., Henry, K., Jiansheng, X., Gao, B., and Lu, X., Synthesis, 2012, vol. 44, no. 14, p. 2231.Google Scholar
  28. 28.
    Ehrlich, A., Heyne, H.-U., Winter, R., Beyermann, M., Haber, H., Carpino, L. A., and Bienert, M., J. Org. Chem., 1996, vol. 61, no. 25, p. 8831.Google Scholar
  29. 29.
    Meutermans, W. D. F., Golding, S. W., Bourne, G. T., Miranda, L. P., Dooley, M. J., Alewood, P. F., and Smythe, M. L., J. Am. Chem. Soc., 1999, vol. 121, no. 42, p. 9790.Google Scholar
  30. 30.
    White, C. J., and Yudin, A. K., Nat. Chem., vol. 11, no. 3, p. 509.Google Scholar
  31. 31.
    Marcucci, E., Tulla-Puche, J., and Albericio, F., Org. Lett., 2012, vol. 14, no. 2, p. 612.Google Scholar
  32. 32.
    Wenger, R. M., Helv. Chim. Acta 1984, vol. 67, no. 2, p. 502.Google Scholar
  33. 33.
    Lewer, P., Graupner, P. R., Hahn, D. R., Karr, L. L., Duebelbeis, D. O., Lira, J. M., Anzeveno, P. B., Fields, S. C., Gilbert, J. R., and Pearce, C., J. Nat. Prod. 2006, vol. 69, no. 10, p. 1506.Google Scholar
  34. 34.
    Guerra-Bubb, J. M.; et al., Bioorg. Med. Chem. Lett., (2013), http://dx.doi.org/10.1016/j.bmcl.2013.06.012 Google Scholar
  35. 35.
    Scribner, A., Houck, D., Huang, Z., Mosier, S., Peel, M., and Scorneaux, B., Bioorg. Med. Chem. Lett. 2010, vol. 20, no. 22, p. 6542Google Scholar
  36. 36.
    Dai, X., Su, Z., and Liu, J. O., Tetrahedron Lett., 2000, vol. 41, no. 33, p. 6295.Google Scholar
  37. 37.
    Klose, J., Bienert, M., Mollenkopf, C., Wehle, D., Zhang, C. W., Carpino, L. A., and Henklein, P., Chem. Commun. 1999, no. 18, p. 1847.Google Scholar
  38. 38.
    Ngo, T. H., Berndt, H., Lentz, D., and Reissig, H. -U., J. Org. Chem. 2012, vol. 77, no. 21, p. 9676.Google Scholar
  39. 39.
    Joullié, M. M., and Lassen, K. M., Arkivoc, 2010, vol. 2010, no. (viii), p. 189.Google Scholar
  40. 40.
    Hiebl, J., Alberts, D. P., Banyard, A. F., Baresch, K., Baumgartner, H., Bernwieser, I., Bhatnagar, P. K., Blanka, M., Bodenteich, M., Chen, T., Esch, P.M., Kollmann, H., Lantos, I., Leitner, K., Mayrhofer, G., Patel, R., Rio, A., Rovenszky, F., Stevenson, D., Tubman, K. D., Undheim, K., Weihtrager, H., Welz, W., and Winkler, K., J. Peptide Res., 1999, vol. 54, no. 00, p. 54.Google Scholar
  41. 41.
    Dunetz, J. R., Xiang, Y., Baldwin, A., and Ringling, J., Org. Lett., 2011, vol. 13, no. 19, p. 5048.Google Scholar
  42. 42.
    Dunetz, J. R., Berliner, M. A., Xiang, Y., Houck, T. L., Salingue, F. H., Chao, W., Yuandong, C., Shenghua, W., Huang, Y., Farrand, D., Boucher, S. J., Damon, D. B., Makowski, T. W., Barrila, M. T., Chen, R., and Martínez, I., Org. Process Res. Dev., 2012, vol. 16, no. 10, p. 1635.Google Scholar
  43. 43.
    Paul, B. J., Littler, B. J., Jos, F., Vogt, P. F., and Pines, S. H., Org. Process Res. Dev., 2006, vol. 10, p. 339.Google Scholar
  44. 44.
    Nahm, S., and Weinreb, S. M., Tetrahedron Lett., 1981, vol. 22, no. 39, p. 3815.Google Scholar
  45. 45.
    Sivaraman, B., Manjunath, B. N., Senthilmurugan, A., Harkrishna, K., and Aidhen, I. S., Ind. J. Chem. 2009, vol. 48B, no. 12, p. 1749.Google Scholar
  46. 46.
    Burkhart, F., Hoffmann, M., and Kessler, H., Angew. Chem. Int. Ed. Eng. 1997, vol. 36, no. 11, p. 1191Google Scholar
  47. 47.
    Dechantsreiter, M. A., Burkhart, F., and Kessler, H., Tetrahedron Lett., 1998, vol. 39, no. 3–4, p. 253.Google Scholar
  48. 48.
    Sharnabai, K. M., Nagendra, G., Vishwanatha, T. M., and Sureshbabu, V. V., Tetrahedron Lett., 2013, vol. 54, no. 6, p. 478.Google Scholar
  49. 49.
    Fish, P. V., Mackenny, M., Bish, G., Buxton, T., Cave, R., Drouard, D., Hoople, D., Jessiman, A., Miller, D., Pasquinet, C., Patel, B., Reeves, K., Ryckmans, T., Skerten, M., and Wakenhut, F. Tetrahedron Lett., 2009, vol. 50, no. 4, p. 389.Google Scholar
  50. 50.
    Scaravelli, F., Bacchi, S., Massari, L., Curcuruto, O., and Westerduin, P., Tetrahedron Lett., 2010, vol. 51, no. 39, p. 5154.Google Scholar
  51. 51.
    Zhang, H. Q., Xia, Z., Kolasa, T., and Dinges, J., Tetrahedron Lett., 2003, vol. 44, no. 48, p. 8661.Google Scholar
  52. 52.
    Muri, E. M. F., Nieto, M. J., R.D. Sindelar, R. D., and Williamson, J. S., Curr. Med. Chem., 2002, vol. 9, no. 17, p. 1631.Google Scholar
  53. 53.
    Bravo, H. R., Lazo, W. J. Agric. Food Chem., 1996, vol. 44, no. 6, p. 1569Google Scholar
  54. 54.
    Nielands, J. B., J. Biol. Chem., 1995, vol. 270, p. 26723.Google Scholar
  55. 55.
    Maehr, H., Pure Appl. Chem., 1971, vol. 28, no. 4, p. 603.Google Scholar
  56. 56.
    Ech-Chahad, A., Minassi, A., Berton, L., and Appendino, G., Tetrahedron Lett., 2005, vol. 46, no. 31, p. 5113.Google Scholar
  57. 57.
    Appendino, G., Minassi, A., Schiano Morello, A., De Petrocellis, L., and Di Marzo, V., J. Med. Chem., 2002, vol. 45, no. 17, p. 3739.Google Scholar
  58. 58.
    Patterson, J. E., Ollmann, I. R., Cravatt, B. F., Boger, D. L., Wong, C. -H. and Lerner, R. A., J. Am. Chem. Soc., 1996, vol. 118, no. 25, p. 5938.Google Scholar
  59. 59.
    Vasantha, B., Hemantha, H. P., and Sureshbabu, V. V., Synthesis, 2010, no. 17, p. 2990.Google Scholar
  60. 60.
    Meudt, A., and Boehm, C., US Patent 7468460, 2008.Google Scholar
  61. 61.
    Brase, S., Gil, C., Knepper, K., and Zimmermann, V. Angew. Chem. Int. Ed. 2005, vol. 44, no. 33, p. 5188.Google Scholar
  62. 62.
    Narendra, B. N., Lamani, R. S., and Sureshbabu, V. V., Tetrahedron Lett., 2010, vol. 51, no. 22, p. 3002.Google Scholar
  63. 63.
    Wissmann, H., König, W., Teetz, V., Geiger, R., Peptides: Proceedings of the 16th European Peptide Symposium, 1980, p. 174.Google Scholar
  64. 64.
    Wedel, M., Walter, A., and Montforts, F.-P., Eur. J. Org. Chem., 2001, vol. 2001, no. 9, p. 1681.Google Scholar
  65. 65.
    Heinze, t., Sarbova, V., Calado, M., and Nagel, V., Cellulose, 2012, vol. 19, no. 2, p. 523.Google Scholar
  66. 66.
    Barton, D. H., and Ferreira, J. A., Tetrahedron, 1996, vol. 52, no. 28, p. 9347.Google Scholar
  67. 67.
    Barton, D. H., and Ferreira, J. A., Tetrahedron, 1996, vol. 52, no. 28, p. 9367.Google Scholar
  68. 68.
    Newcomb, M., Tetrahedron, 1993, vol. 49, no. 6, p. 1151.Google Scholar
  69. 69.
    Hartung, J., Hiller, M., Schwarz, M., Svoboda, I., and Fuess, H., Liebigs Ann., 1996, vol. 1996, no. 12, p. 2091.Google Scholar
  70. 70.
    Barton, D. H. R., Blundell, P., and Jaszberenyi, J. C., J. Am. Chem. Soc., 1991, vol. 113, no. 18, p. 6937.Google Scholar
  71. 71.
    Hartung, J., and Schwarz, M. Synlett, 2000, no. 3, p. 371.Google Scholar
  72. 72.
    Jablonkai, E., et al. Tetrahedron Lett., (2013), http://dx.doi.org/ 10.1016/j.tetlet.2013.08.082 Google Scholar
  73. 73.
    Hoelderich, W. F., and Dahlhoff, G., Chemical Innovation, 2001, vol. 31, no. 2, p. 29.Google Scholar
  74. 74.
    Meudt, A., Scherer, S., and Boehm, C., US Patent 7405318, 2008.Google Scholar
  75. 75.
    Augustine, J. K., Kumar, R., Bombrun, A., and Mandal, A. B., Tetrahedron Lett., 2011, vol. 52, no. 10, p. 1074.Google Scholar
  76. 76.
    Augustine, J. K., Atta, R. N., Ramappa, B. K., and Boodappa, C., Synlett, 2009, no. 20, p. 3378.Google Scholar
  77. 77.
    Meudt, A., Scherer, S., and Nerdinger, S., US Patent 20070161813, 2007.Google Scholar
  78. 78.
    Meudt, A., Nerdinger, S., and Boehm, C., US Patent 7939688, 2011.Google Scholar
  79. 79.
    Meudt, A., Scherer, S., and Boehm, C., US Patent 7262328, 2007.Google Scholar
  80. 80.
    Meudt, A., Scherer, S., and Boehm, C., US Patent application 2008/0027262, 2008.Google Scholar
  81. 81.
    Nagendra, G., Madhu, C., Vishwanatha, T. M., and Sureshbabu, V. V., Tetrahedron Lett., 2012, vol. 53, no. 38, p. 5059.Google Scholar
  82. 82.
    Periasamy, M., and Thirumalaikumar, M., J. Organomet. Chem., 2000, vol. 609, no. 1–2, p. 137.Google Scholar
  83. 83.
    Augustine, J. K., Bombrun, A., Sauer, W. H. B., and Vijaykumar, P., Tetrahedron Lett., 2012, vol. 53, no. 37, p. 5030.Google Scholar
  84. 84.
    Mapp, A. K., and Dervan, P. B., Tetrahedron Lett., 2000, vol. 41, no. 49, p. 9451.Google Scholar
  85. 85.
    Fazio, F., and Wong, C.-H., Tetrahedron Lett., 2003, vol. 44, no. 51, p. 9083.Google Scholar
  86. 86.
    Park, S.-D., Oh, J.-H., and Lim, L., Tetrahedron Lett., 2002, vol. 43, no. 36, p. 6309.Google Scholar
  87. 87.
    Rohmer, K., Keiper, O., Mannuthodikayil, J., and Wittmann, V., Proceedings of the 31st European Peptide Symposium, 2010, p. 218.Google Scholar
  88. 88.
    Rao, Y., Li, X., Nagorny, P., Hayashida, J., and Danishefsky, S. J., Tetrahedron Lett., 2009, vol. 50, no. 48, p. 6684.Google Scholar
  89. 89.
    Madhu, C., Basavaprabhu, Vishwanatha, T. M., and Sureshbabu, V. V., Tetrahedron Lett., 2012, vol. 53, no. 11, p. 1406.Google Scholar
  90. 90.
    Palomo, C., Aizpurua, J. M., Ganboa, I., and Oiarbide, M., Eur. J. Org. Chem., 1999, vol. 1999, no. 12, p. 3223.Google Scholar
  91. 91.
    Singh, G. S., Tetrahedron, 2003, vol. 59, no. 39, p.7631.Google Scholar
  92. 92.
    Crichfield, K. S., Hart, J. E., Lampert, J. T., and Vaid, R. K., Synth. Commun., 2000, vol. 30, no. 20, p.3737.Google Scholar
  93. 93.
    Brady, W. T., and Gu, Y. Q., J. Org. Chem., 1989, vol. 54, no. 12, p. 2838.Google Scholar
  94. 94.
    Zarei, M., Mendeleev Commun., 2013, vol. 23, no. 1, p. 39.Google Scholar
  95. 95.
    Kakiuchi, Y., Sasaki, N., Satoh-Masuoka, M., Murofushi, H., and Murakami-Murofushi, K., Biochem. Biophys. Res. Commun., 2004, vol. 320, no. 4, p. 1351.Google Scholar
  96. 96.
    Desroses, M., Jacques-Cordonnier, M.-J., Llona-Minguez, S., Jacques, S., Koolmeister, T., Helleday, T., and Scobie, M., Eur. J. Org. Chem., 2013, vol. 2013, no. 26, p. 5879.Google Scholar
  97. 97.
    Reddy, K. A., Lohray, B. B., Bhushan, V., Bajji, A. C., Reddy, K. V., Reddy, P. R., Krishna, T. H., Rao, I. N., Jajoo, H. K., Rao, N. V. S. M., Chakrabarti, R., Dileepkumar, T., and Rajagopalan, R., J. Med. Chem., 1999, vol. 42, no. 11, p. 1927.Google Scholar
  98. 98.
    Kumar, K. S. S., Swaroop, T. R., Harsha, K. B., Narasimhamurthy, K. H., and Rangappa, K. S., Tetrahedron Lett., 2012, vol. 53, no. 42, p. 5619.Google Scholar
  99. 99.
    Napierski, B., Rebenstock, H.-P., and Holla, W., US Patent 6407258, 2002.Google Scholar
  100. 100.
    Bacchi, S. US Patent 7838680, 2010.Google Scholar
  101. 101.
    Massari, L., Panelli, L., Hughes, M., Stazi, F., Maton, W., Westerduin, P., Scaravelli, F., and Bacchi, S., Org. Process Res. Dev., 2010, vol. 14, no. 6, p. 1364.Google Scholar
  102. 102.
    Augustine, J. K., Vairaperumal, V., Narasimhan, S., Alagarsamy, P., and Radhakrishnan, A., Tetrahedron, 2009, vol. 65, no. 48, p. 9989.Google Scholar
  103. 103.
    Varma, S. R., and Kumar, D., Org. Lett. 1999, vol. 1, no. 5, p. 697.Google Scholar
  104. 104.
    Suresh, and Sandhu, J. S. Arkivoc, 2012, vol. 2012, no. (i), p. 66.Google Scholar
  105. 105.
    Neves Filho, R. A. W., Brauer, M. C. N., Palm-Forster, M. A. T., De Oliveira, R. N., and Wessjohann, L. A. Recent Patents on Catalysis, 2012, vol. 1, no. 1, p. 51.Google Scholar
  106. 106.
    Zumpe, F. L., Flüb, M., Schmitz, K., and Lender, A., Tetrahedron Lett. 2007, vol. 48, no. 8, p. 1421.Google Scholar
  107. 107.
    Desroses, M., Wieckowski, K., Stevens, M., and Odell, L. R. Tetrahedron Lett. 2011, vol. 52, no. 34, p. 4417.Google Scholar
  108. 108.
    Herraiz, T., and Galisteo, J., J. Agric. Food Chem., 2003, vol. 51, no. 24, p. 7156.Google Scholar
  109. 109.
    Herraiz, T., and Galisteo, J., Free Radical Res., 2002, vol. 36, no. 8, p. 923.Google Scholar
  110. 110.
    Herraiz, T., J. Agric. Food Chem., 2000, vol. 48, no. 10, p. 4900.Google Scholar
  111. 111.
    Desroses, M., Koolmeister, T., Jacques, S., Llona-Minguez, S., Jacques-Cordonnier, M. -C. Cazares-Korner, A., Helleday, T., and Scobie, M., Tetrahedron Lett., 2013, vol. 54, no. 27, p. 3554.Google Scholar
  112. 112.
    Raghavendra, G. M., Ramesha, A. B., Revanna, C. N., Nandeesh, K. N., Mantelingu, K., and Rangappa, K. S., Tetrahedron Lett., 2011, vol. 52, no. 43, p. 5571.Google Scholar
  113. 113.
    Wen, X., Bakali, J. E., Deprez-Poulain, R., and Deprez, B., Tetrahedron Lett., 2012, vol. 53, no. 19, p. 2440.Google Scholar
  114. 114.
    Ramesha, A. B., Raghavendra, G. M., Nandeesh, K. N., Rangappa, K. S. and Mantelingu, K., Tetrahedron Lett., 2013, vol. 54, no. 1, p. 95.Google Scholar
  115. 115.
    Wang, J., Mason, R., VanDerveer, D. Feng, K., and Bu, X. R., J. Org. Chem., 2003, vol. 68, no. 13, p. 5415.Google Scholar
  116. 116.
    Katritzky, A. R., and Qiu, G., J. Org. Chem., 2001, vol. 66, no. 8, p. 2862.Google Scholar
  117. 117.
    Crawforth, J. M., and Paoletti, M., Tetrahedron Lett., 2009, vol. 50, no. 34, p. 4916.Google Scholar
  118. 118.
    Augustine, J. K., Bombrun, A., and Venkatachaliah, S., Tetrahedron Lett., 2011, vol. 52, no. 50, p. 6814.Google Scholar
  119. 119.
    Jida, M., and Deprez, B., New J. Chem., 2012, vol. 36, p. 869.Google Scholar
  120. 120.
    Augustine, J. K., Bombrun, A., Alagarsamy, P., and Jothi, A., Tetrahedron Lett., 2012, vol. 53, no. 46, p. 6280.Google Scholar
  121. 121.
    Connolly, D. J., Cusack, D., O’Sullivan, T. P., and Guiry, P. J., Tetrahedron, 2005, vol. 61, no. 43, p. 10153.Google Scholar
  122. 122.
    Mhsake, S. B., and Argade, N. P., Tetrahedron, 2006, vol. 62, no. 42, p. 9787.Google Scholar
  123. 123.
    Desroses, M., Scobie, M., and Helleday, T., DOI: 10.1039/c3nj00618bGoogle Scholar
  124. 124.
    Poojari, S., Naik, P. P., and Krishnamurthy, G., Tetrahedron Lett., 2012, vol. 53, no. 35, p. 4639.Google Scholar
  125. 125.
    Augustine, J. K., Bombrun, A., Ramappa, B., and Boodappa, C., Tetrahedron Lett., 2012, vol. 53, no. 33, p. 4422.Google Scholar
  126. 126.
    Unsworth, W. P., Kitsiou, C., and Taylor, R. J. K., Org. Lett., 2013, vol. 15, no. 2, p. 258.Google Scholar
  127. 127.
    Sieck, O., Ehwald, M., Liebscher, J., Eur. J. Org. Chem., 2005, vol. 2005, no. 4, p. 663.Google Scholar
  128. 128.
    Unsworth, W. P., Gallagher, K. A., Jean, M., Schmidt, J. P., Diorazio, L. J., and Taylor, R. J. K., Org. Lett., 2013, vol. 15, no. 2, p. 262.Google Scholar
  129. 129.
    Hermann, S., German patent 10063493, 2002.Google Scholar
  130. 130.
    Shu, L., Gu, C., Dong, Y., and Brinkman, R., Org. Process Res. Dev., 2012, vol. 16, no. 12, p. 1940.Google Scholar
  131. 131.
    Prasanna, T. S. R., and Raju, K. M., E-Journal Chem., 2011, vol. 8, no. S1, p. S420.Google Scholar
  132. 132.
    Prasanna, T. S. R., and Raju, M. K., J. Korean Chem. Soc., 2012, vol. 56, no. 1, p. 74.Google Scholar
  133. 133.
    Witt, A., Gustavsson, A., and Bergman, J., J. Heterocyclic Chem., 2003, vol. 40, no. 1, p. 29.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Anirudha A. Waghmare
    • 1
  • Rama Mohan Hindupur
    • 1
  • Hari N. Pati
    • 1
  1. 1.Department of Process ChemistryAdvinus Therapeutics Ltd.BangaloreIndia

Personalised recommendations