Advertisement

Review Journal of Chemistry

, Volume 3, Issue 1, pp 52–94 | Cite as

Photochromic spirocompounds and chromenes for sensing metal ions

  • V. A. Barachevsky
Article

Abstract

The results of studying the photoinduced and dark formation of complexes between molecules of the merocyanine form of photochromic spirocompounds (spiropyrans, spiroxazines) and chromenes that bear no crown ether moieties and various metal cations are reviewed. Certain dependences of the efficiency and selectivity of ion complexation on the structure of photochromic compounds are revealed using absorption and fluorescence spectroscopy. Functionalized photochromic spiropyrans were used to prepare samples of efficient optical chemosensors to determine metal ions in liquid media.

Keywords

photochromism complexation metal cations absorption and fluorescence analysis optical chemosensors spiropyrans spiroxazines chromenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diamond, D., Coyle, S., Scarmagnani, S., and Hayes, J., Chem. Rev., 2008, vol. 108, no. 2, p. 652.CrossRefGoogle Scholar
  2. 2.
    Bertelson, R.C., Photochromism, Brown, G.H., Ed., New York: Wiley-Interscience, 1971, p. 45.Google Scholar
  3. 3.
    Barachevsky, V.A., Lashkov, G.I., and Tsekhomskii, V.A., Fotokhromizm i ego primenenie (Photochromism and Its Applications), Moscow: Khimiya, 1977.Google Scholar
  4. 4.
    Photochromism: Molecules and Systems, Durr, H. and Bouas-Laurent, H., Eds., (Amsterdam: Elsevier, p. 2003.Google Scholar
  5. 5.
    Organic Potochromic and Thermochromic Compounds, Crano, J.C. and Guglielmetti, R.J., Eds., New York: Plenum, p. 1999.Google Scholar
  6. 6.
    Fedorova, O.A. and Gromov, S.P., Targets in Heterocyclic Systems: Chemistry and Properties, 2000, vol. 4, p. 205.Google Scholar
  7. 7.
    Kimura, K., Sakamoto, H., and Nakamura, M., Bull. Chem. Soc. Jpn., 2003, vol. 76, no. 2, p. 225.CrossRefGoogle Scholar
  8. 8.
    Alfimov, M.V., Fedorova, O.A., and Gromov, S.P., J. Photochem. Photobiol., A, 2003, vol. 158, nos. 2–3, p. 183.CrossRefGoogle Scholar
  9. 9.
    Tsukanov, A.V., Dubonosov, A.D., Bren’, V.A., and Minkin, V.I., Chem. Heterocycl. Comp., 2008, vol. 44, no. 8, p. 899.CrossRefGoogle Scholar
  10. 10.
    Ushakov, E.N., Alfimov, M.V., and Gromov, S.P., Russ. Chem. Rev., 2008, vol. 77, no. 1, p. 39.CrossRefGoogle Scholar
  11. 11.
    Paramonov, S.V., Lokshin, V., and Fedorova, O.A., J. Photochem. Phobiol., C., vol. 12, no. 3, p. 209.Google Scholar
  12. 12.
    Chibisov, A.K. and Gorner, H., Chem. Phys., 1998, vol. 237, no. 2, p. 425.CrossRefGoogle Scholar
  13. 13.
    Phillips, J.P., Mueller, A., and Przystal, F., J. Am. Chem. Soc., 1965, vol. 87, no. 17, p. 4020.CrossRefGoogle Scholar
  14. 14.
    Zakharova, M.M., Pimienta, V., Metelitsa, A.V., Minkin, V.I., and Misho, Zh.-K, Ross. Khim. Zh., 2007, vol. 51, no. 6, p. 71.Google Scholar
  15. 15.
    Przystal, F. and Phillips, J.P., Heterocycl. Chem, 1967, vol. 4, no. 1, p. 131.CrossRefGoogle Scholar
  16. 16.
    Winkler, J.D., Bowen, C.M., and Michelet, V., J. Am. Chem. Soc., 1998, vol. 120, no. 13, p. 3237.CrossRefGoogle Scholar
  17. 17.
    Collins, G.E., Choi, L.-S., Ewing, K.J., Bowen, C.M., and Winkler, J.D., Chem. Commun., 1999, no. 4, p. 321.Google Scholar
  18. 18.
    Voloshin, N.A., Chernyshev, A.V., Metelitsa, A.V., Besugliy, S.O., Voloshina, E.N., Sadimenko, L.P., and Minkin, V.I., ARKIVOC, 2004, no. 11, p. 16.Google Scholar
  19. 19.
    Chernyshev, A.V., Metelitsa, A.V., Gaeva, E.B., Voloshin, N.A., Borodkin, G.S., and Minkin, V.I., J. Phys. Org. Chem., 2007, vol. 29, no. 11, p. 908.CrossRefGoogle Scholar
  20. 20.
    Krikun, V.M., Sadimenko, L.P., Voloshina, E.N., and Voloshin, N.A., Rus. J. Gen. Chem., 2009, vol. 79, no. 6, p. 1191.CrossRefGoogle Scholar
  21. 21.
    Guo, X., Zhou, Y., Zhang, D., Yin, B., Liu, C., Lu, Z., Huang, Y., and Zhu, D., Org. Chem., 2004, vol. 69, no. 25, p. 8924.CrossRefGoogle Scholar
  22. 22.
    Guo, X., Zhang, D., Wang, T., and Zhu, D., Chem. Commun., 2003, no. 7, p. 914.Google Scholar
  23. 23.
    Kubinyi, M., Varga, O., Baranyai, P., Kallay, M., Mizsei, R., Tarkanyi, G., and Vidoczy, T., J. Mater. Struct., 2011, vol. 100, no. 1, p. 77.Google Scholar
  24. 24.
    Ohno, S., J. Chem. Soc. Jpn., 1977, no. 5, p. 633.Google Scholar
  25. 25.
    Atabekyan, L.S. and Chibisov, A.K., J. Photochem., 1986, vol. 34, no. 3, p. 323.CrossRefGoogle Scholar
  26. 26.
    Atabekyan, L.S. and Chibisov, A.K., Mol. Cryst. Liq. Cryst., 1994, vol. 246, no. 1, p. 263.CrossRefGoogle Scholar
  27. 27.
    Atabekyan, L.S., Astaf’ev, P.N., Roitman, G.P., Romanovskaya, G.I., and Chibisov, A.K., Zh. Fiz. Khim., 1982, vol. 56, no. 6, p. 1913.Google Scholar
  28. 28.
    Atabekyan, L.S. and Chibisov, A.K., Izv. Akad. Nauk SSSR, Ser. Khim., 1988, no. 8, p. 2243.Google Scholar
  29. 29.
    Kalinichenko, N.B., Mirov, I.N., and Atabekyan, L.S., Zh. Neorg. Khim., 1994, vol. 39, no. 6, p. 995.Google Scholar
  30. 30.
    Atabekyan, L.S. and Chibiov, A.K., Itogi Nauki Tekhn., Ser.: Sovrem. Problemy Lazern. Fiz. 1990, vol. 1, p. 162.Google Scholar
  31. 31.
    Atabekyan, L.S., High Energy Chem., 2002, vol. 36, no. 6, p. 391.CrossRefGoogle Scholar
  32. 32.
    Atabekyan, L.S. and Chibisov, A.K., High Energy Chem., 1998, vol. 32, no. 1, p. 30.Google Scholar
  33. 33.
    Oda, H., Dyes Pigments, 1998, vol. 38, no. 4, p. 243.CrossRefGoogle Scholar
  34. 34.
    Atabekyan, L.S. and Chibiov, A.K., Khim. Vysok. Energ., 1996, vol. 30, no. 4.Google Scholar
  35. 35.
    Atabekyan, L.S. and Chibisov, A.K., Zh. Anal. Khim., 1988, vol. 38, no. 6, p. 1787.Google Scholar
  36. 36.
    Atabekyan, L.S., Lilikin, A.I., Zakharova, G.V., and Chibisov, A.K., Khim. Vysok. Energ., 1996, vol. 30, no. 6, p. 452.Google Scholar
  37. 37.
    Atabekyan, L.S., Roitman, G.P., and Chibisov, A.K., Zh. Anal. Khim., 1982, vol. 43, no. 2, p. 389.Google Scholar
  38. 38.
    Atabekyan, L.S., Lilikin, A.I., Zakharova, G.V., and Chibisov, A.K., High Energy Chem., 1996, vol. 30, p. 409.Google Scholar
  39. 39.
    Gorner, H. and Chibisov, A.K., J. Chem. Soc., Faraday Trans., 1998, vol. 94, no. 17, p. 2557.CrossRefGoogle Scholar
  40. 40.
    Zhou, J.-W., Li, Y.-T., and Song, X.-Q., J.Photochem. Photobiol., A, 1995, vol. 87, no. 1, p. 37.CrossRefGoogle Scholar
  41. 41.
    Strokach, Yu.P., Valova, T.M., Barachevsky, V.A., Arsenov, V.D., and Alfimov, M.V., Sci. Appl. Photo, 2000, vol. 41, no. 6, p. 491.Google Scholar
  42. 42.
    Nikolaeva, O.G., Tsukanov, A.V., Shepelenko, E.N., Lukyanov, B.S., Metelitsa, A.V., Kostyrina, O.Yu., Dubonosov, A.D., Bren, V.A., and Minkin, V.I., Int. J. Photoenergy, 2009, p. 1.Google Scholar
  43. 43.
    Le Baccon, M. and Guglielmetti, R., J. Chem. Res. (M), 1979, no. 5, p. 1801.Google Scholar
  44. 44.
    Robillard, J., Luna-Moreno, D., and Olmos, M., Opt. Mater., 2003, vol. 24, no. 3, p. 491.CrossRefGoogle Scholar
  45. 45.
    Barachevsky, V.A., Strokach, Yu.P., Puankov, Yu.A., Kobeleva, O.I., Valova, T.M., Levchenko, K.S., Yarovenko, V.N., and Krayushkin, M.M., ARKIVOC, 2009, no. 9, p. 70.Google Scholar
  46. 46.
    Barachevsky, V.A., Kobeleva, O.I., Valova, T.M., Popov, L.D., Shcherbakov, I.N., Bulanov, A.O., and Kogan, V.A., Russ. J. Gen. Chem., 2009, vol. 79, no. 12, p. 2787.CrossRefGoogle Scholar
  47. 47.
    Shao, N., Zhang, Y., Cheung, S., and Yang, R., Chan W.-H., Mo T., Li K., Liu F, Anal. Chem., 2005, vol. 77, no. 22, p. 7294.CrossRefGoogle Scholar
  48. 48.
    Han, S. and Chen, Y., Anal. Methods, 2011, vol. 3, no. 3, p. C. 557.CrossRefGoogle Scholar
  49. 49.
    Han, S. and Chen, Y., Dyes Pigments, 2011, vol. 88, no. 3, p. 235.CrossRefGoogle Scholar
  50. 50.
    Shao, N., Jin, J.Y., Wang, H., Zhang, Y., Yang, R.H., and Chan, W.H., Anal. Chem., 2008, vol. 80, no. 9, p. 3466.CrossRefGoogle Scholar
  51. 51.
    Shao, N., Wang, H., Gao, X., Yang, R., and Chan, W.-H., Anal. Chem., 2010, vol. 82, no. 11, p. 4628.CrossRefGoogle Scholar
  52. 52.
    Taylor, L.D., Nicholson, J., and Davis, R.B., Tetrahedron Lett., 1967, no. 17, p. 1585.Google Scholar
  53. 53.
    Winkler, J.D., Deshayes, K., and Shao, B., J. Am. Chem. Soc., 1989, vol. 111, no. 2, p. 769.CrossRefGoogle Scholar
  54. 54.
    Zhu, J.-F., Yuan, H., Chan, W.-H., and Lee, A.W.V., Tetrahedron Lett, 2010, vol. 51, no. 12, p. 1550.CrossRefGoogle Scholar
  55. 55.
    Zhu, J.-F., Yuan, H., Chan, W.-H., and Lee, A.W.V., Org. Biomol. Chem., 2010, vol. 8, no. 17, p. 3957.CrossRefGoogle Scholar
  56. 56.
    Voloshin, N.A., Chernyshev, A.V., Metelitsa, A.V., Raskita, I.M., Voloshina, E.N., and Minkin, V.I., Russ. Chem. Bull., 2005, vol. 54, no. 3, p. 705.CrossRefGoogle Scholar
  57. 57.
    Chernyshev, A.V., Voloshin, N.A., Raskita, I.M., and Minkin, V.I., J. Photochem. Photobiol., A, 2006, vol. 184, no. 3, p. 289.CrossRefGoogle Scholar
  58. 58.
    Roxburgh, C.J., Sammes, P.G., and Abdullah, A., Eur. J. Inorg. Chem., 2008, no. 31, p. 4951.Google Scholar
  59. 59.
    Zakhaova, M.I., Coudret, C., Pimenta, V., Micheau, J.C., Delbaere, S., Vermeersh, G., Metelitsa, A., Voloshin, N., and Minkin, V.I., Photochem. Phobiol. Sci., 2010, vol. 9, no. 2, p. 199.CrossRefGoogle Scholar
  60. 60.
    Zakhaova, M.I., Coudret, C., Pimenta, V., Micheau, J.C., Sliva, M., Poizat, O., Buntinx, G., Delbaere, S., Vermeersh, G., Metelitsa, A., Voloshin, N., and Minkin, V.I., Dyes and Pigments, 2011, vol. 89, no. 3, p. 324.CrossRefGoogle Scholar
  61. 61.
    Sakata, T., Jackson, D.K., Mao, S., and Marriott, G., J. Org. Chem., 2008, vol. 73, no. 1, p. 227.CrossRefGoogle Scholar
  62. 62.
    Attia, M.S., Khalil, M.M., Abdel-Mottaleb, M.S.A., Lukyanova, M.B., Alekseenko, Yu.A., and Lukyanov, B., Int. J. Photoenergy, 2006, p. 1.Google Scholar
  63. 63.
    Natali, M., Soldi, L., and Giordani, S., Tetrahedron, 2010, vol. 66, no. 38, p. 7612.CrossRefGoogle Scholar
  64. 64.
    Ren, J. and Tian, H., Sensors, 2007, vol. 7, no. 12, p. 3166.CrossRefGoogle Scholar
  65. 65.
    Wojityk, J.T.C., Kazmaier, P.M., and Buncel, E., Chem.Commun., 1998, no. 16, p. 1703.Google Scholar
  66. 66.
    Wojityk, J.T.C., Kazmaier, P.M., and Buncel, E., Chem. Mater., 2001, vol. 13, no. 8, p. 2547.CrossRefGoogle Scholar
  67. 67.
    Guo, X., Zhang, D., Zhang, G., and Zhu, D., J. Phys. Chem. B, 2004, vol. 108, no. 32, p. 11942.CrossRefGoogle Scholar
  68. 68.
    Guo, X., Zhang, D., and Zhu, D., J. Phys. Chem. B, 2004, vol. 108, no. 1, p. 212.CrossRefGoogle Scholar
  69. 69.
    Guo, X., Zhang, D., Tao, H., and Zhu, D., Org. Lett., 2004, vol. 6, no. 15, p. 2491.CrossRefGoogle Scholar
  70. 70.
    Choi, H., Ku, B.-S., Keum, S-R., Kang, S.O., and Ko, J., Terahedron, 2005, vol. 61, no. 15, p. 3719.CrossRefGoogle Scholar
  71. 71.
    Guo, X., Zhang, D., and Zhu, D., Adv. Mater., 2004, vol. 16, no. 2, p. 125.CrossRefGoogle Scholar
  72. 72.
    Filley, J., Ibrahim, M.A., Nimlos, R., Watt, A.S., and Slake, D.M., J. Photochem. Photobiol., A, 1998, vol. 117, no. 3, p. 193.CrossRefGoogle Scholar
  73. 73.
    Yagi, S., Nakamura, S., Watanabe, D., and Nakazumi, H., Dyes Pigments, 2009, vol. 80, no. 1, p. 98.CrossRefGoogle Scholar
  74. 74.
    Liu, Z., Jiang, L., Liang, Z., and Gao, Y., Tetrahedron Lett., 2005, vol. 46, no. 5, p. 885.CrossRefGoogle Scholar
  75. 75.
    Liu, Z., Jiang, L., Liang, Z., and Gao, Y., Tetrahedron, 2006, vol. 62, no. 14, p. 3214.CrossRefGoogle Scholar
  76. 76.
    Liu, Z., Jiang, L., Liang, Z., and Gao, Y., J. Mol. Struct., 2005, vol. 737, nos. 2–3, p. 267.CrossRefGoogle Scholar
  77. 77.
    Kumar, S., Chau, C., Chau, G., and McCurdy, A., Tetrahedron, 2008, vol. 64, nos 30–31, p. 7097.CrossRefGoogle Scholar
  78. 78.
    Suzuki, T., Kawata, Y., Kahara, S., and Kato, T., Chem. Commun., 2003, no. 16, p. 2004.Google Scholar
  79. 79.
    Radu, A., Burne, R., Alhashimy, N., and Fusaro, M., J. Photochem. Photobiol., A, 2009, vol. 206, nos. 2–3, p. 109.CrossRefGoogle Scholar
  80. 80.
    Fries, K.H., Driskell, J.D., Samanta, S., and Locklin, J., Anal. Chem., 2010, vol. 82, no. 8, p. 3306.CrossRefGoogle Scholar
  81. 81.
    Suzuki, T., Kato, T., and Shinozaki, H., Chem. Commun., 2004, no. 18, p. 2036.Google Scholar
  82. 82.
    Hirahara, Y., Bunya, K., and Shinozaki, H., J. Mater. Chem., 2010, vol. 20, p. 2773.CrossRefGoogle Scholar
  83. 83.
    Kobayashi, N., Sato, S., Takazawa, K., Ikeda, K., and Hibohashi, R., Electochim. Acta, 1995, vol. 40, nos 13–14, p. 2309.CrossRefGoogle Scholar
  84. 84.
    Samanta, S. and Locklin, J., Langmuir, 2008, vol. 24, no. 17, p. 9558.CrossRefGoogle Scholar
  85. 85.
    Fries, K., Samanta, S., Orski, S., and Locklin, J., Chem. Commun., 2008, no. 43, p. 5288.Google Scholar
  86. 86.
    Burne, R.J., Stitzel, S.E., and Diamond, D., J. Mater. Chem, 2005, vol. 16, no. 14, p. 1332.CrossRefGoogle Scholar
  87. 87.
    Natali, M., Aakeroy, C., Desper, J., and Giordani, S., Dalton Trans., 2010, vol. 39, no. 35, p. 8269.CrossRefGoogle Scholar
  88. 88.
    Scarmagnani, S., Walsh, Z., Slater, C., Albashimy, N., Paull, B., Macka, M., and Diamond, D., J. Mater. Chem., 2008, vol. 18, no. 42, p. 5063.CrossRefGoogle Scholar
  89. 89.
    Connal, L.A., Franks, G.V., and Qiao, G.G., Langmuir, 2010, vol. 26, no. 13, p. 10397.CrossRefGoogle Scholar
  90. 90.
    Park, S., Jang, Y.-S., Lee, K.-J., and Kim, J.-M., Chem. Commun., 2010, no. 16, p. 2859.Google Scholar
  91. 91.
    Radu, A., Scarmagnani, S., Byrne, R., Slater, C., and Tong, K.T., J. Phys. D: Appl. Phys., 2007, vol. 40, no. 23, p. 7238.CrossRefGoogle Scholar
  92. 92.
    Tamaki, T. and Ichimura, K., J. Chem. Soc., Chem. Commun., 1989, no. 12, p. 1477.Google Scholar
  93. 93.
    Oda, H., J. Chem. Technol. Biotechnol., 1993, vol. 58, no. 4, p. 343.CrossRefGoogle Scholar
  94. 94.
    Minkovska, S., Kolev, K., Jejiazkova, B., and Deligeorgiev, T., Dyes Pigments, 1998, vol. 39, no. 1, p. 25.CrossRefGoogle Scholar
  95. 95.
    Tian, Z., Stairs, R.A., Wyer, M., Mosey, N., Dust, J.M., Kraft, T.M., and Buncel, E., J. Phys. Chem. A, 2010, vol. 114, no. 44, p. 11900.CrossRefGoogle Scholar
  96. 96.
    Zhou, J., Zhao, F., Li, Y., Zhang, F., and Song, X., J. Photochem. Photobiol., A, 1995, vol. 92, no. 3, p. 193.CrossRefGoogle Scholar
  97. 97.
    Preigh, M.J., Lin, F.-T., Ismail, K.Z., and Weber, S.G., Chem. Commun., 1995, p. 2091.Google Scholar
  98. 98.
    Strokach, Yu.P., Valova, T.M., Barachevsky, V.A., Alfimov, M.V., Lokshin, V., Guglielmetti, R., and Samat, A., Sci. Appl. Photo, 1999, vol. 44, no. 6, p. 491.Google Scholar
  99. 99.
    Deligeorgiev, T., Minkovska, S., Jejiazkova, B., and Rakovsky, S., Dyes Pigments, 2002, vol. 53, no. 2, p. 101.CrossRefGoogle Scholar
  100. 100.
    Lafuma, A., Chodorowski-Kimmes, S., Quinn, F.X., and Sanchez, C., Eur. J. Inorg. Chem., 2003, no. 2, p. 331.Google Scholar
  101. 101.
    Nishikiori, H., Takamura, T., Shimamura, S., and Fujii, T., J. Photochem. Photobiol., A, 2011, vol. 222, no. 1, p. 236.CrossRefGoogle Scholar
  102. 102.
    Minkovska, S., Fedieva, M., Jellaskova, B., and Deligeorgiev, T., Polyhedron, 2004, vol. 23, no. 18, p. 3147.CrossRefGoogle Scholar
  103. 103.
    Alhashimy, N., Byrne, R., Minkovska, S., and Diamond, D., Tetrahedron Lett., 2009, vol. 50, no. 42, p. 2573.CrossRefGoogle Scholar
  104. 104.
    Jejiazkova, B., Minkovska, S., and Deligeorgiev, T., J. Photochem. Photobiol., A, 2005, vol. 171, no. 2, p. 153.CrossRefGoogle Scholar
  105. 105.
    Nishikiori, H., Tanaka, N., Takagi, K., and Fujii, T., J. Photochem. Photobiol., A, 2007, vol. 189, no. 1, p. 46.CrossRefGoogle Scholar
  106. 106.
    Strokach, Yu.P., Valova, T.M., Barachevsky, V.A., Shienok, A.I., and Marevtsev, I.S., Rus. Chem. Bull., 2005, vo. 54, no. 6, p. 1477.CrossRefGoogle Scholar
  107. 107.
    Popov, L.D., Shcherbakov, I.N., Kogan, V.A., Kobeleva, O.I., Valova, T.M., Barachevsky, V.A., Shienok, A.I., Kol’tsova, L.S., and Zaichenko, N.L., Rus. Chem. Bull., 2009, vol. 58, no. 5, p. 974.CrossRefGoogle Scholar
  108. 108.
    Zhang, Z., Zhang, C., Fan, M., and Yan, W., Dyes Pigments, 2008, vol. 77, no. 2, p. 469.CrossRefGoogle Scholar
  109. 109.
    Kopelman, R.A., Paquette, M.M., and Frank, N., Inorg. Chim. Acta, 2008, vol. 361, nos. 12–13, p. 3570.CrossRefGoogle Scholar
  110. 110.
    Kopelman, R.A., Snyder, S.M., and Frank, N., J. Am. Chem. Soc., 2003, vol. 125, no. 45, p. 13684.CrossRefGoogle Scholar
  111. 111.
    Zhang, C., Zhang, Z., Fan, M., and Yan, W., Dyes and Pigments, 2008, vol. 76, no. 3, p. 832.CrossRefGoogle Scholar
  112. 112.
    Nishikiori, H., Sasai, R., Arai, N., and Takagi, K., Chem. Lett., 2000, vol. 29, no. 10, p. 1142.CrossRefGoogle Scholar
  113. 113.
    Nishikiori, H., Sasai, R., Takagi, K., and Fujii, T., Langmuir, 2006, vol. 22, no. 7, p. 3376.CrossRefGoogle Scholar
  114. 114.
    Stauffer, M.T. and Weber, S.G., Anal. Chem., 1999, vol. 71, no. 6, p. 1146.CrossRefGoogle Scholar
  115. 115.
    Kumar, S., Hemandez, D., Hoa, B., Lee, Y., Yang, J.S., and McCurdy, A., Org. Lett., 2008, vol. 10, no. 17, p. 3761.CrossRefGoogle Scholar
  116. 116.
    Ahmed, S.A., Tanaka, M., Ando, H., Ivamoto, H., and Kimura, K., Tetrahedron, 2003, vol. 59, no. 23, p. 4135.CrossRefGoogle Scholar
  117. 117.
    Benito-Lopez, F., Scarmagnani, S., Walsh, Z., Paull, B., and Me, M., Sens. Actuators, B, 2009, vol. 140, no. 1, p. 295.CrossRefGoogle Scholar
  118. 118.
    Collins, G.E., Morris, R.E., Wie, J.-P., Smith, M., Hammond, M.H., Michelet, V., Winkler, J.D., Serino, P.M., and Guo, V., Energy Fuels, 2002, vol. 16, no. 5, p. 1054.CrossRefGoogle Scholar
  119. 119.
    Evans, L., Collins, G.E., and Shaffer, R.E., Anal. Chem., 1999, vol. 71, no. 17, p. 5322.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. A. Barachevsky
    • 1
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations