Review Journal of Chemistry

, Volume 2, Issue 1, pp 20–50 | Cite as

Polymorphism and molecular metal phthalocyanine complexes

  • N. Sh. Lebedeva
  • E. A. Mal’kova
  • A. I. V’yugin
Article

Abstract

Generalized data and new results characterizing the molecular metal phthalocyanine complexes with electron-donor and π-π-complexing agents are presented. It is shown that the crystalline packing of pseudopolymorphs formed by molecular complexes of metal phthalocyanine: ligand = 1: 2 is similar to the packing of molecules of metal phthalocyanine in the β-polymorphic form, while the molecular complex (1: 1) shows similarity to the α-polymorph. The topography of films based on axial and π-π complexes Zn(tert-Bu)4Pc is evaluated. It is shown that the surface of films based on biligand complexes is generally smooth, flat, and dense, although there are some rather large crystallites. The topography of the films is not regular, because the π-stacking axis of the pseudopolymorphs of β-crystallites is situated perpendicularly to the substrate. Films obtained on the basis of monoligand complexes are layered; the layers are perpendicular to the substrate, and the topography of the film is regular, because the π-stacking axis of the pseudopolymorphs of α-crystallites is parallel to the quartz substrate. An alternative way to obtain metal phthalocyanines of a given polymorphic modification is discussed.

Keywords

metal phthalocyanines polymorphism molecular complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horn, D. and Honigmann, B., Polymorphie des Kupferphthalocyanines, Weinheim: Verlag Chemie, 1978.Google Scholar
  2. 2.
    Janczak, J. and Kubiak, R., Polyhedron, 2001, vol. 20, p. 2901.Google Scholar
  3. 3.
    Manson, R., Williams, G.A., and Fielding, P.E., J. Chem. Soc., Dalton Trans., 1979, vol. 4, p. 676.Google Scholar
  4. 4.
    Robertson, J.M., J. Chem. Soc., 1935, p. 615.Google Scholar
  5. 5.
    Scheidt, W.R. and Dow, W., J. Am. Chem. Soc., 1977, vol. 99, p. 1101.Google Scholar
  6. 6.
    Brown, C.J., J. Chem. Soc., A, 1968, p. 2488.Google Scholar
  7. 7.
    Zerner, M. and Gouterman, M., Theor. Chim. Acta, 1966, vol. 4, no. 1, p. 44.Google Scholar
  8. 8.
    Gould, R.D., Coord. Chem. Rev., 1996, vol. 156, p. 237.Google Scholar
  9. 9.
    Ukei, K., Acta Crystallogr., 1973, vol. 29, no. 10, p. 2290.Google Scholar
  10. 10.
    Brinkmann, M. and Turek, P., J. Mater. Chem., 1998, vol. 8, no. 3, p. 675.Google Scholar
  11. 11.
    Santucci, S., Di Nardo, S., Lozzi, L., Ottaviano, L., Passacantando, M., and Picozzi, P., Surf. Rev. Lett., 1997, vol. 5, p. 433.Google Scholar
  12. 12.
    Hoshino, A., Takenaka, Y., and Miyaji, H., Acta Crystallogr., 2003, vol. 59, p. 393.Google Scholar
  13. 13.
    Berger, O., Fischer, W.J., Adolphi, B., and Tierbach, A., J. Mat. Sci.: Mater. Electron., 2000, vol. 11, p. 331.Google Scholar
  14. 14.
    Ottavviano, L., Lozzi, L., Phani, A.R., Ciattoni, A., Santucci, S., and Di Nardo, S., Appl. Surf. Sci., 1998, vol. 136, p. 81.Google Scholar
  15. 15.
    Caminiti, R., Capobianchi, A., Marovino, P., Paoletti, A.M., Padeletti, G., Pannesi, G., and Rossi, G., Thin Solid Films, 2001, vol. 382, p. 74.Google Scholar
  16. 16.
    Hiromitsu, I., Ikeda, N., and Ito, T., Synth. Met., 1997, vol. 85, p. 1737.Google Scholar
  17. 17.
    Lee, Y.L., Hsiao, Ch.Yi., Chang, Ch.H., and Yang, Y.M., Sen. Actuators, B, 2003, vol. 94, p. 169.Google Scholar
  18. 18.
    Snow, A.W. and Barger, W.R., in Phthalocyanines: Properties and Application, Leznoff, C.C. and Lever, A.B.P., Eds., New York: VCH, 1989.Google Scholar
  19. 19.
    Lee, Y.L., Wu, H.Y., Chang, Ch.H., and Yang, Y.M., Thin Solid Films, 2003, vol. 423, p. 169.Google Scholar
  20. 20.
    Hassan, B.M., Hong, Li., and McKeown, N.B., J. Mat. Chem., 2000, vol. 10, p. 39.Google Scholar
  21. 21.
    Lebedeva, N.Sh., Parfenyuk, E.V., and Malkova, E.A., Spectrochim. Acta, A, 2007, vol. 68, p. 491.Google Scholar
  22. 22.
    Nakamura, M. and Tokumoto, H., Surf. Sci., 1998, vol. 398, p. 143.Google Scholar
  23. 23.
    Sidorov, A.N. and Kotlyar, I.P., Opt. Spektrosk., 1961, vol. 11, no. 2, p. 175.Google Scholar
  24. 24.
    Stymne, B., Sauvaget, F.X., and Wettermark, G., Spectrosc. Acta, A, 1979, vol. 35, p. 1195.Google Scholar
  25. 25.
    Moser, F.H. and Thomas, A.L., Phthalocyanine Compounds, NewYork: Reinhold Publ., 1963.Google Scholar
  26. 26.
    Tackley, D.R., Dent, G., and Smith, W.E., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 3949.Google Scholar
  27. 27.
    Kolesov, B.A., Basova, T.V., and Igumenov, I.K., Thin Solid Films, 1997, vol. 304, p. 166.Google Scholar
  28. 28.
    Venugopala Reddy, K.R., Keshavayya, J., and Seetharamappa, J., Dyes Pigm., 2003, vol. 59, p. 237.Google Scholar
  29. 29.
    Zhonghai Ni, Renjie Li, and Jianzhuang Jiang, Struct. Bond., 2009, vol. 133, p. 121. doi: 10.1007/430 2008 13Google Scholar
  30. 30.
    Ebert Jr., A.A. and Gottlieb, H.B., J. Am. Chem. Soc., 1952, vol. 74, p. 2806.Google Scholar
  31. 31.
    Cannon, G.G. and Sutherland, G.B., Spectrochim. Acta, 1951, vol. 4, p. 373.Google Scholar
  32. 32.
    Steinbach, F. and Joswig, H.J., J. Catal., 1978, vol. 55, no. 3, p. 272.Google Scholar
  33. 33.
    Pakhomov, G.L., Pakhomov, L.G., and Bagrov, A.M., Khim. Fiz., 1995, vol. 14, no. 12.Google Scholar
  34. 34.
    Xue, D.G., Xiao, H.M., and Tian, H., J. Mol. Struct., 2002, vol. 593, p. 93.Google Scholar
  35. 35.
    Easter, J.W., US Patent 2770629, 1956.Google Scholar
  36. 36.
    Shigemitsu, M., Bull. Chem. Soc. Jpn., 1959, vol. 32, no. 7, p. 691.Google Scholar
  37. 37.
    Iliev, V.I., Ileva, A.I., and Dimitrov, L.D., Appl. Cat., A, 1995, vol. 126P, p. 333.Google Scholar
  38. 38.
    Andre, J.J. and Brinkmann, M., Synth. Met., 1997, vol. 90, p. 211.Google Scholar
  39. 39.
    Lebedeva, N.Sh., Pavlycheva, N.A., Vyugin, A.I., Kulinich, V.P., Shaposhnikov, G.P., and Parfenyuk, E.V., J. Therm. Anal. Calorim., 2005, vol. 81, p. 451.Google Scholar
  40. 40.
    Michio, A., Natsu, U., and Eiji, S., Bull. Chem. Soc. Jpn., 1966, vol. 39, no. 12, p. 2616.Google Scholar
  41. 41.
    Andre, J.-J. and Brinkmann, M., J. Synth. Met, 2001, vol. 121, p. 1359.Google Scholar
  42. 42.
    Brinkmann, M., Wittmann, J.C., Chaumont, C., and Andre, J.-J., Thin Solid Films, 1997, vol. 292, p. 192.Google Scholar
  43. 43.
    Klapper, H., Kobayashi, M., Kobayashi, T., and Sato, K., Organic Crystals I, Freyhardt, H.C. and Mullers, G., Eds., Berlin: Springer, 1991.Google Scholar
  44. 44.
    Iwatsu, F., Kobayashi, T., and Uyeda, N., J. Phys. Chem., 1980, vol. 84, no. 24, p. 3223.Google Scholar
  45. 45.
    Iwatsu, F., J. Phys. Chem., 1988, vol. 92, p. 1678.Google Scholar
  46. 46.
    Moriomoto, K. and Inabe, T., J. Mater. Chem., 1995, vol. 5, p. 1749.Google Scholar
  47. 47.
    Environmental Protection Agency. http://www.epa.gov/opptintr/chemfact/dioxa-fs.txt
  48. 48.
    Janczak, J., Kubiak, R., Sledz, M., Borrmann, H., and Grin, Y., Polyhedron, 2003, vol. 22, p. 2689.Google Scholar
  49. 49.
    Harutyunyan, A.R. and Kuznetsov, A.A., Chem. Phys. Lett., 1995, vol. 241, p. 168.Google Scholar
  50. 50.
    Cariati, F., Morazzoni, F., and Busetto, C., J. Chem. Soc., Dalton Trans., 1976, vol. 8, p. 496.Google Scholar
  51. 51.
    Cariati, F., Galizzioli, D., Morazzoni, F., and Busetto, C., J. Chem. Soc., Dalton Trans., 1975, vol. 9, p. 556.Google Scholar
  52. 52.
    Nemykin, V.N., Kobayashi, N., Chernii, V.Y., and Belsky, V.K., Eur. J. Inorg. Chem., 2001, vol. 3, p. 733.Google Scholar
  53. 53.
    Endo, A., Matsumoto, S., and Mizuguchi, J., J. Phys. Chem., A, 1999, vol. 103, no. 41, p. 8193.Google Scholar
  54. 54.
    Edward, A.O. and Stillman, J.M., Inorg. Chem., 1994, vol. 33, no. 3, p. 573.Google Scholar
  55. 55.
    Dale, B.W., Trans. Faraday Soc., 1969, vol. 65, no. 2, p. 331.Google Scholar
  56. 56.
    Dale, B.W., Williams, R.J.P., Edwards, P.R., and Johnson, C.E., Trans. Faraday Soc., 1968, vol. 64, no. 3, p. 620.Google Scholar
  57. 57.
    Stillman, M.J., J. Chem. Soc., Faraday Trans., 1974, vol. 70, no. 5, p. 790.Google Scholar
  58. 58.
    Lever, A.B.P., Wilshire, J.P., and Quan, S.K., J. Am. Chem. Soc., 1979, vol. 101, p. 36680.Google Scholar
  59. 59.
    Templeton, H.D., Fischer, M.S., Zalkin, A., and Calvin, M., J. Am. Chem. Soc., 1971, vol. 93, no. 11, p. 2622.Google Scholar
  60. 60.
    Kirner, J.F., Dow, W., and Scheidt, W.R., Inorg. Chem., 1976, vol. 15, no. 7, p. 1685.Google Scholar
  61. 61.
    Janczak, J. and Kubiak, R., Polyhedron, 2002, vol. 21, p. 265.Google Scholar
  62. 62.
    Kobayashi, T., Ashida, T., Uyeda, N., Suito, E., and Kakudo, M., Bull. Chem. Soc. Jpn., 1971, vol. 44, no. 8, p. 2095.Google Scholar
  63. 63.
    Lebedeva, N.Sh., Mal’kova, E.A., Pavlycheva, N.A., and V’yugin, A.I., Russ. J. Coord. Chem., 2004, vol. 30, no. 12, p. 864.Google Scholar
  64. 64.
    Lebedeva, N.Sh., Mal’kova, E.A., V’yugin, A.I., Maizlish, V.E., and Shaposhnikov, G.P., Russ. J. Inorg. Chem., 2008, vol. 53, no. 2, p. 261.Google Scholar
  65. 65.
    Lebedeva N.Sh., Malkova, E.A., Parfenyuk, E.V., and Vyugin A.I., J. Incl. Phenom. Macrocycl. Chem., 2007, vol. 59, p. 71.Google Scholar
  66. 66.
    Lebedeva, N.Sh., Trofomova, E.V., Pavlycheva, N.A., and V’yugin, A.I., Russ. J. Org. Chem., 2002, vol. 38, no. 8, p. 1195.Google Scholar
  67. 67.
    Lebedeva, N.Sh., Pavlycheva, N.A., Parfenyuk, E.V., and Vyugin, A.I., J. Chem. Thermodyn., 2006, vol. 38, p. 165.Google Scholar
  68. 68.
    Lebedeva, N.Sh., Pavlycheva, N.A., Parfenyuk, E.V., Vyugin, A.I., and Malkova, E.A., J. Porphyrins Phthalocyanines, 2003, vol. 7, p. 558.Google Scholar
  69. 69.
    Lebedeva, N.Sh., Malkova, E.A., Melkonyn, Sh.R., Fedorov, M.I., Maslennikov, S.V., Parfenyuk, E.V., and Vyugin, A.I., J. Porhpyrins Phthalocyanines, 2008, vol. 12, p. 1118.Google Scholar
  70. 70.
    Vedeneev, V.I., Gurvich, L.V., and Kondrat’ev, V.N., Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu. Spravochnik (Chemical Bond Cleavage Energies. Ionization Potentials and Electron Affinity: A Handbook), Moscow: Akad. nauk SSSR, 1962.Google Scholar
  71. 71.
    Lebedeva, N.Sh., V’yugin, A.I., and Mikhailovskii, K.V., Russ. J. Gen. Chem., 2003, vol. 73, no. 6, p. 968.Google Scholar
  72. 72.
    Metzler, D.E., Biochemistry: The Chemical Reactions of Living Cells, New York: Academic, 1977.Google Scholar
  73. 73.
    Aggarwal, R.C. and Singh, P.P., Z. Anorgan. Allgem. Chem., 1964, vol. 332, p. 103.Google Scholar
  74. 74.
    Smith, A., Applied Infrared Spectroscopy, New York: Wiley, 1979.Google Scholar
  75. 75.
    Sudhindra, B.S. and Fuhrhop, J.H., Int. J. Quantum Chem., 1981, vol. 20, no. 3, p. 747.Google Scholar
  76. 76.
    Chandra, A.K. and Lim, E.C., Proc. Int. Conf. “Molecular Luminescence, Excimer Luminescence”, Chicago, 1968, p. 249.Google Scholar
  77. 77.
    Hunter, C.A., Meah, M.N., and Sanders, K.M., J. Am. Chem. Soc., 1990, vol. 112, p. 5773.Google Scholar
  78. 78.
    Matlaba, P. and Nyokong, T., Polyhedron, 2002, vol. 21, p. 2463.Google Scholar
  79. 79.
    Schutte, W.J., Sluyters-Rehbach, M., and Sluyters, J.H., J. Phys. Chem., 1993, vol. 97, p. 6069.Google Scholar
  80. 80.
    Hunter, C.A. and Sanders, J.K.M., J. Am. Chem. Soc., 1990, vol. 112, p. 5525.Google Scholar
  81. 81.
    Chamaeva, O.A. and Kitaigorodskii, A.N., Izv. Akad. Nauk SSSR, 1989, vol. 6, p. 1263.Google Scholar
  82. 82.
    Shelnutt, C.A., J. Am. Chem. Soc., 1982, vol. 105, p. 774.Google Scholar
  83. 83.
    Alden, R.G., Ondrias, M.R., and Shelnutt, J.A., J. Am. Chem. Soc., 1990, vol. 112, p. 691.Google Scholar
  84. 84.
    Lebedeva, N.Sh. and Parfenyuk, E.V., J. Therm. Anal. Calorim., 2007, vol. 87, no. 2, p. 437.Google Scholar
  85. 85.
    Sprovochnik khimika (Chemist’s Handbook), vol. 2: Osnovnye svoistva neorganicheskikh i organicheskikh soedinenii (General Characteristics of Inorganic and Organic Compounds), Nikol’skii, B.P., Ed., Moscow: Khimiya, 1964.Google Scholar
  86. 86.
    Stepanov, B.I., Vvedenie v khimiyu i tekhnologiyu organicheskikh krasitelei (Introduction to the Chemistry and Technology of Organic Dyes), Moscow: Khimiya, 1984.Google Scholar
  87. 87.
    Heilmeier, G.H. and Harrison, S.E., Phys. Rev., 1963, vol. 132, p. 2010.Google Scholar
  88. 88.
    Fillard, J.P. and Schott, M., C.r. Acad. Sci., 1966, vol. AB262, no. 19, p. 1287.Google Scholar
  89. 89.
    Wihksne, K. and Newkirk, A.E., J. Chem. Phys., 1961, vol. 34, p. 2184.Google Scholar
  90. 90.
    Shihub, S.I., Gould, R.D., and Gravano, S., Physica, 1996, vol. 222, p. 136.Google Scholar
  91. 91.
    Shaposhnikov, G.P., Kulinich, V.P., and Maizlish, V.E., Usp. Khim. Porfirin., 1999, vol. 2, p. 190.Google Scholar
  92. 92.
    Elshereafy, E., Abd El-Ghaffar, M.A., and Wettrmark, G., Thermochim. Acta, 1991, vol. 186, no. 2, p. 179.Google Scholar
  93. 93.
    Shorin, V.A., Meshkova, G.N., Vartanyan, A.T., Pribytkova, N.N., Al’yanov, M.I., and Borodkin, V.F., Izv. Vysh. Ucheb. Zaved., Ser.: Khim. Khim. Tekhnol., 1973, vol. 16, no. 12, p. 1904.Google Scholar
  94. 94.
    Shorin, V.A., Kulinich, V.P., Shaposhnikov, G.P., Fedorov, M.I., and Maslennikov, S.V., Izv. Vysh. Ucheb. Zaved., Ser.: Khim. Khim. Tekhnol., 1993, vol. 36, no. 5, p. 35.Google Scholar
  95. 95.
    Pakhomov, L.G. and Pakhomov, G.L., Zh. Fiz. Khim., 1995, vol. 69, no. 5, p. 957.Google Scholar
  96. 96.
    Schollhorn, B., Germain, J.P., Pauly, A., Maleysson, C., and Blanc, J.P., Thin Solid Films, 1998, vol. 326, p. 245.Google Scholar
  97. 97.
    Kiselev, V.F., Poverkhnostnye yavleniya v poluprovodnikakh i dielektrikakh (Surface Phenomena in Semiconductors and Dielectrics), Moscow: Nauka, 1970.Google Scholar
  98. 98.
    Guldi, D.M., Ramey, J., Martinez-Diaz, M.V., Escosura, A., Torres, T., Da Ros, T., and Prato, M., Chem. Commun., 2002, p. 2774.Google Scholar
  99. 99.
    Tanaka, D., Riukawa, M., Sanui, K., and Ogata, N., Synth. Met., 1999, vol. 102, p. 1492.Google Scholar
  100. 100.
    Hanack, M., Knecht, S., Polley, R., and Subramanian, L.R., Synth. Met., 1996, vol. 80, p. 183.Google Scholar
  101. 101.
    Nakagawa, M., Riukawa, M., Sanui, K., and Ogata, N., Synth. Met., 1997, vol. 84, p. 391.Google Scholar
  102. 102.
    Inabe, T., Asari, T., Hasegawa, H., Matsuda, M., Gacho, E.H., Matsumura, N., Takeda, S., Takeda, K., and Naito, T., Synth. Met., 2003, vol. 133, no. 134, p. 515.Google Scholar
  103. 103.
    Hasegawa, H., Naito, T., Inabe, T., Akutagava, T., and Nakamura, T., J. Mater. Chem., 1998, vol. 8, no. 7, p. 1567.Google Scholar
  104. 104.
    Selvaraji, S.L. and Xavier, F.P., J. Cryst. Grown, 2001, vol. 233, p. 583.Google Scholar
  105. 105.
    Shigehara, K., Takizawa, M., and Takeda, K., Synth. Met., 1995, vol. 71, p. 2303.Google Scholar
  106. 106.
    Pakhomov, G.L., Muller, C., Pakhomov, L.G., Pozdnyaev, D.E., and Ribo, J.M., Thin Solid Films, 1997, vol. 304, p. 36.Google Scholar
  107. 107.
    Kogan, I.L. and Yakushi, K., J. Mater. Chem., 1997, vol. 7, no. 11, p. 2231.Google Scholar
  108. 108.
    Radhakrishnan, S. and Deshpande, S.D., Mater. Lett., 2001, vol. 48, p. 144.Google Scholar
  109. 109.
    Morimoto, K., Kim, S.-J., and Shigehara, K., Synth. Met., 1997, vol. 84, p. 353.Google Scholar
  110. 110.
    Amar, N.M., Gould, R.D., and Saleh, A.M., Curr. Appl. Physics, 2002, vol. 2, no. 6, p. 455.Google Scholar
  111. 111.
    Inabe, T., Ishikawa, M., Asari, T., Hasegawa, H., Fujita, A., Matsumura, N., Naito, T., Matsuda, M., and Tajima, H., Mol. Cryst. Liq. Cryst., 2006, vol. 455, p. 87.Google Scholar
  112. 112.
    Viller, O.G., Usp. Khim., 1961, vol. 30, no. 6, p. 776.Google Scholar
  113. 113.
    Organicheskie poluprovodniki (Organic Semiconductors), Karyagin, V.A., Ed., Moscow: Nauka, 1968.Google Scholar
  114. 114.
    Moriya, K., Enomoto, H., and Nakamura, Y., Sens. Actuators, B, 1993, vols. 13–14, p. 412.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. Sh. Lebedeva
    • 1
  • E. A. Mal’kova
    • 1
  • A. I. V’yugin
    • 1
  1. 1.Institute of the Chemistry of SolutionsRussian Academy of SciencesIvanovoRussia

Personalised recommendations