Advertisement

Review Journal of Chemistry

, Volume 1, Issue 4, pp 344–358 | Cite as

Mechanism and principles of organization of catalytic radical heterogeneous-homogeneous processes

  • N. A. Vasil’eva
  • R. A. Buyanov
Article

Abstract

The mechanisms and regularities of unbranched radical-chain reactions are considered using the example of the pyrolysis of hydrocarbons or dichloroethane involving heterogeneous catalysts. The phenomenological model of such reactions and experimental proof of its validity are presented. An effect of “ignition” of the catalyst activity is discovered, and its nature is explained. The concept of “catalysis sphere” is introduced, and the conditions of its existence and functioning are determined. The experimental criteria for the occurrence of the sphere are found. The offered mechanism creates the possibility for a purposeful selection and synthesis of catalysts and for a choice of means of the technological organization of the heterogeneous-homogeneous processes with the participation of radicals.

Keywords

catalysis pyrolysis hydrocarbons dichloroethane chain mechanism radical-chain process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kolts, J.H. and Delzer, G.A., Science, 1986, vol. 232.Google Scholar
  2. 2.
    Putun, E., Usun, B.B., and Putun, A.E., Energy Fuels, 2009, vol. 23, no. 4, p. 2248.CrossRefGoogle Scholar
  3. 3.
    Galikeev, A.R., Pet. Chem., vol. 47, no. 5, p. 359.Google Scholar
  4. 4.
    Basily, I.K., El-Shaltawy, S.T., and Mostafa, B.S., J. Anal. Appl. Pyrolysis, 2006, vol. 76, nos. 1–2, p. 24.CrossRefGoogle Scholar
  5. 5.
    Krummenacher, J.J. and Schmid, L., D, J. Catal., 2004, vol. 222, no. 2, p. 429.CrossRefGoogle Scholar
  6. 6.
    Schmidt, L.D., Siddal, J., and Bearden, M., AIChE J., 2000, vol. 46, no. 8, p. 1492.CrossRefGoogle Scholar
  7. 7.
    Watanabe, A., Aromatikkusu, 2007, vol. 59, no. 2, p. 217.Google Scholar
  8. 8.
    Xiang-Hai, M., Jin-Sen, G., Li, L., and Chun-Ming, H., Pet. Sci. Technol., 2004, vol. 22, p. 1327.CrossRefGoogle Scholar
  9. 9.
    Tanner, D.D., Kandanarachchi, P., Ding, Q., Sao, H., Vizitiu, D., and Franz, J.A., Energy Fuels, 2001, vol. 15, no. 1, p. 197.CrossRefGoogle Scholar
  10. 10.
    Parmon, V.N., Udalov, E.I., Tanashev, Yu.Yu., Bolotov, V.A., and Chernousov, Yu.D., Proc. 8th Int. Conf. on Mechanism of Catalytic Reactions, Novosibirsk, 2009, vol. 2, p. 235.Google Scholar
  11. 11.
    Buyanov, R.A., Vasil’eva, N.A., Parmon, V.N, Pozdnyakov, G.A., Pravdin, S.S., Snytnikov, V.N., Fomin, V.M., Fomichev, V.P., and Shepelenko, V.N., Endotermicheskii khimicheskii reaktor s gazodinamicheskim upravleniem (Endothermal Chemical Reactors with Gasdynamic Control), Novosibirsk: Inst. teor. prikl. mekhaniki, 2001.Google Scholar
  12. 12.
    Vora, B.V., Marker, T.L., and Barger, P.T., US Patent 6049017, 2000, Chem. Abstr., 2000, vol. 132, 237520.Google Scholar
  13. 13.
    FRG Patent 1357166, Chem. Abstr., 2004, vol. 139, 309829.Google Scholar
  14. 14.
    UK Patent 2004106463, Chem. Abstr., 2006, vol. 142, 25726.Google Scholar
  15. 15.
    Belg. Patent 2008012218, Chem. Abstr., 2009, vol. 148, 194971.Google Scholar
  16. 16.
    Karatun, O.N., Lavrent’eva, T.A., and Gorbunov, A.M., RF Patent 2343975, 2009, Chem. Abstr., 2009, vol. 150, 147975.Google Scholar
  17. 17.
    Aleksandrov, Yu.A., Didenkulova, I.I., Shekunova, V.M., Tsyganova, E.I., and Pishchurova, I.A., RF Patent 2331473, 2008, Chem. Abstr., 2009, vol. 149, 269936.Google Scholar
  18. 18.
    Azatyan, V.V., Intezarova, E.I., Margolis, L.Ya., and Sklyarenko, V.I., Kinet. Katal., 1982, vol. 23, no. 4, p. 775.Google Scholar
  19. 19.
    Azatyan, V.V., Piloyan, A.A., and Baimuratova, G.R., Kinet. Catal., vol. 49, no. 2, p. 178.Google Scholar
  20. 20.
    Azatyan, V.V., Baklanov, D.I., and Bold’yan, I.A., Combust., Explos. Shock Waves, 2008, vol. 44, no. 6, p. 732.CrossRefGoogle Scholar
  21. 21.
    Sinev, M.Y., J. Catal., 2003, vol. 216, nos. 1–2, p. 468.CrossRefGoogle Scholar
  22. 22.
    Spinicci, R. and Toffanari, A., Thermochim. Acta, 1995, no. 269, p. 677.Google Scholar
  23. 23.
    Sinev, M.Y., Fattakhova, Z.T., and Lomonosov, V.I., J. Natural Gas Chem., 2009, vol. 18, no. 3, p. 273.CrossRefGoogle Scholar
  24. 24.
    Kossiakoff, A. and Riece, F.O., J. Am. Chem. Soc., 1943, vol. 65, no. 2, p. 590.CrossRefGoogle Scholar
  25. 25.
    Vasil’eva, N.A and Buyanov, R.A., Dokl. Akad. Nauk, 1994, vol. 337, no. 5, p. 622.Google Scholar
  26. 26.
    Vasilieva, N.A. and Zarutskaya, N.L., React. Kinet. Catal. Lett., 1991, vol. 45, no. 1, p. 119.CrossRefGoogle Scholar
  27. 27.
    Matveev, A.N., Molekulyarnaya fizika (Molecular Physics), Moscow: Vysshaya Shkola, 1987.Google Scholar
  28. 28.
    Krylov, O.V., Kinet. Katal., 1993, vol. 34, no. 1, p. 14.Google Scholar
  29. 29.
    Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidative Conversions of Methane), Moscow: Nauka, 1998.Google Scholar
  30. 30.
    Snelson, A., J. Phys. Chem., 1970, vol. 74, no. 4, p. 537.CrossRefGoogle Scholar
  31. 31.
    Benson, S.W., J. Chem. Phys., 1963, vol. 38, no. 8, p. 1945.CrossRefGoogle Scholar
  32. 32.
    Vasil’eva, N.A. and Buyanov, R.A., Kinet. Katal., 1993, vol. 34, no. 5, p. 835.Google Scholar
  33. 33.
    Freund, F., J. Geophys. Res. Solid Earth, 1993, vol. 98, no. 12, p. 22209.CrossRefGoogle Scholar
  34. 34.
    Plyasova, L.M., Vasil’eva, N.A., Kriger, T.A., Shmakov, A.N., and Litvak, G.S., Kinet. Catal., vol. 41, no. 4, p. 557.Google Scholar
  35. 35.
    Vasil’eva, N.A., Plyasova, L.M., and Odegova, G.V., Kinet. Catal., vol. 47, no. 3, p. 437.Google Scholar
  36. 36.
    Plyasova, L.M., Vasil’eva, N.A., and Odegova, G.V., Russ. J. Inorg. Chem., vol. 50, no. 8, p. 1131.Google Scholar
  37. 37.
    Nalbandyan, A.B. and Vardanyan, I.A., Sovremennoe sostoyanie problemy gazofaznogo okisleniya organicheskikh soedinenii (State of the Art of Gas-Phase Oxidation of Organic Compounds), Yerevan: AN AR SSR, 1986.Google Scholar
  38. 38.
    Vasil’eva, N.A. and Buyanov, R.A., Khim. Inter. Ustoich. Razv., 2004, vol. 12, no. 6, p. 661.Google Scholar
  39. 39.
    Ismagilov, Z.R., Pak, S.N., and Yermolaev, V.K., J. Catal., 1992, vol. 136, no. 1, p. 197.CrossRefGoogle Scholar
  40. 40.
    Vasil’eva, N.A. and Uvarov, N.F., Kinet. Catal., vol. 52, no. 1, p. 98.Google Scholar
  41. 41.
    Freund, F., J. Geodyn., 2003, vol. 35, no. 3, p. 353.CrossRefGoogle Scholar
  42. 42.
    Uvarov, N.F., Russ. J. Electrochem., vol. 43, no. 4, p. 368.Google Scholar
  43. 43.
    Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2008.Google Scholar
  44. 44.
    Vasil’eva, N.A. and Panfilov, V.N., Kinet. Catal., vol. 43, no. 2, p. 170.Google Scholar
  45. 45.
    Kondrat’ev, V.N., Kinetika khimicheskikh gazovykh reaktsii (Kinetics of Gas-Phase Chemical Reactions), Moscow: Akad. Nauk SSSR, 1958.Google Scholar
  46. 46.
    Vasil’eva, N.A. and Buyanov, R.A., Kinet. Catal., vol. 39, no. 4, p. 584.Google Scholar
  47. 47.
    Vasilieva, N.A., Buyanov, R.A., and Zarutskaya, N.L., React. Kinet. Catal. Lett., 1991, vol. 45, p. 133.CrossRefGoogle Scholar
  48. 48.
    Adel’son, S.V., Vorontsova, T.A., Zhanshin, M.Zh., Ivankovskii, B.L., Nikonov, V.I., and Sokolovskaya, G.V., Neftekhimiya, 1979, vol. 19, no. 6, p. 862.Google Scholar
  49. 49.
    Adel’son, S.V. and Kuznetsova, O.V., Kinet. Katal., 1984, vol. 25, no. 1, p. 103.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations