Advertisement

Arid Ecosystems

, Volume 5, Issue 2, pp 57–65 | Cite as

Water resources and hydrothermal moistening conditions in the Lower Volga basin

  • N. A. Shumova
Systematic Study of Arid Territories

Abstract

The hydrography of the Low Volga basin is described. The interannual variability of the Volga run-off at the Volgograd gauge is shown. The ecologically significant corridor of deviation of the annual runoff from the average annual value is marked out. Heat resources (potential evapotranspiration) and natural moistening resources (precipitation) are estimated in the Lower Volga basin under current climate conditions. The average daily above zero air temperature sums and annual precipitation, as well as the values of the moistening coefficient and hydrothermal coefficient under current climate conditions and their expected values under different scenarios of climate change, are presented.

Keywords

Lower Volga precipitation potential evapotranspiration hydrothermal coefficient climate change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balyuk, T.V., Consequences of prolongation and volume of floods in Volga-Akhtuba floodplain after creation of Volgogradskoe reservoir for the plants, in Otsenka vliyaniya izmeneniya vod sushi na nazemnye ekosistemy (Assessment of Influence of Changes in Land Waters on Terrestrial Ecosystems), Moscow: Nauka, 2005, pp. 176–193.Google Scholar
  2. Bolgov, M.V. and Sentsova, N.I., Extreme shallow water periods in the Volga basin, in Ekstremal’nye gidrologicheskie situatsii (Extreme Hydrological Events), Koronkevich, N.I., Barabanova, E.A., and Zaitseva, I.S., Eds., Moscow: Media-PRESS, 2010, pp. 369–391.Google Scholar
  3. Budagovskii, A.I., Isparenie pochvennoi vlagi (Evaporation of Soil Water), Moscow: Nauka, 1964.Google Scholar
  4. Budyko, M.I., Klimat v proshlom i budushchem (Climate in the Past and Future), Leningrad: Gidrometeoizdat, 1980.Google Scholar
  5. Cherenkova, E.A. and Shumova, N.A., Evaporation in quantitative climate indices, Arid. Ekosist., 2007, vol. 13, nos. 33–34, pp. 57–69.Google Scholar
  6. Climate Change, The IPCC Scientific Assessment, Cambridge, United Kingdom: Cambridge Univ. Press. 1990.Google Scholar
  7. Climate Change 2001: the scientific basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge Univ. Press. 2001.Google Scholar
  8. Geograficheskii entsiklopedicheskii slovar’: Geograficheskie nazvaniya (Geographical Encyclopedia: Geographical Names), Moscow: Sovetskaya Entsiklopediya, 1989.Google Scholar
  9. Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R., and Travis, L., Efficient threedimensional global models for climate studies: models I and II, Mon. Weather Rev., 1983, vol. 3, pp. 609–662.CrossRefGoogle Scholar
  10. IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations, Intergovernmental Panel on Climate Change, World Meteorological Organization, 1994.Google Scholar
  11. Khromov, S.P. and Mamontova, L.I., Meteorologicheskii slovar’ (Meteorological Dictionary), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  12. Kolomyts, E.G., Forecast and paleogeographic scenarios of the zonal hydroclimatic and biotic conditions in the Volga basin, Water Resour., 2006, vol. 33, no. 2, pp. 187–204.CrossRefGoogle Scholar
  13. Koronkevich, N.I., Barabanova, E.A., and Zaitseva, I.S., Input of human activity to formation of extreme hydrological events, in Ekstremal’nye gidrologicheskie situatsii (Extreme Hydrological Events), Koronkevich, N.I., Barabanova, E.A., and Zaitseva, I.S., Eds., Moscow: Media-PRESS, 2010, pp. 163–178.Google Scholar
  14. Levit-Gurevich, L.K., Water economic problems of Lower Volga, in Ekonomicheskie i territorial’nye aspekty upravleniya vodokhozyaistvennym kompleksom Rossii (Economic and Territorial Aspects of Administration of Hydrological Complex of Russia), Danilov-Danilyan, V.I. and Pryazhinskii, V.G., Eds., Moscow: Ross. Akad. S-kh Nauk, 2013, pp. 188–214.Google Scholar
  15. Manabe, S. and Wetherald, R.T., Large-scale changes in soil wetness induced by an increase in carbon dioxide, Atmos. Sci., 1987, vol. 44, pp. 1211–1235.CrossRefGoogle Scholar
  16. Morton, F.I., Estimating evaporation and transpiration from climatological observations, J. Appl. Meteorol., 1975, vol. 14, pp. 488–497.CrossRefGoogle Scholar
  17. Reki i ozera mira. Entsiklopediya (Encyclopedia of the Rivers and Lakes of the World), Moscow: Entsiklopediya, 2012.Google Scholar
  18. Selyaninov, G.T., Principles of agroclimatic zoning of the Soviet Union, in Voprosy agroklimaticheskogo raionirovaniya SSSR (Problems of Agroclimatic Zoning of the Soviet Union), Moscow: Minist. Sel. Khoz. SSSR, 1958, pp. 7–14.Google Scholar
  19. Shiklomatov, I.A. and Kozhevnikov, V.P., Losses of run-off in Volga-Akhtuba floodplain and the Volga River delta, and their transformation caused by economic activities, Tr. Gos. Gidrol. Inst., 1974, no. 221, pp. 3–46.Google Scholar
  20. Shumova, N.A., Estimation of the accuracy of a model for calculation of soil water storage dynamics, Russ. Meteorol. Hydrol., 2003, no. 10, pp. 65–72.Google Scholar
  21. Shumova, N.A., Assessment of vulnerability of hydrothermal conditions and zonal borders of arid areas at different probable climate changes, Arid. Ekosist., 2007, vol. 13, no. 32, pp. 34–46.Google Scholar
  22. Shumova, N.A., Zakonomernosti formirovaniya vodopotrebleniya i vodoobespechennosti agrotsenozov v usloviyakh yuga Russkoi ravniny (The Pattern of Water Consumption and Supply of Agrocenosises in the South Russian Plain), Moscow: Nauka, 2010.Google Scholar
  23. Shumova, N.A., Changes in environmentally significant characteristics of the hydrological regime of the Lower Volga under runoff control, Arid Ecosyst., 2014, vol. 4, no. 3, pp. 158–168.CrossRefGoogle Scholar
  24. Sirotenko, O.D. and Gringof, I.G., Assessment of the effect of expected climate changes on agriculture of Russian Federation, Meteorol. Gidrol., 2006, no. 8, pp. 92–101.Google Scholar
  25. Tegart, W.J.M.G. and Sheldon, G.W., Climate change 1992, in The Supplementary Report to the IPCC Impacts Assessment, Canberra, Australia, 1992.Google Scholar
  26. Thornthwaite, C.W., An approach toward a rational classification of climate, Geogr. Rev., 1948, vol. 38, no. 1, pp. 55–94.CrossRefGoogle Scholar
  27. US Country Studies Program. Guidance for Vulnerability and Adaptation Assessments, Washington DC: US Country Stud. Manage. Team, 1994.Google Scholar
  28. Ust’ya rek Kaspiiskogo regiona: istoriya formirovaniya, sovremennye gidrologo-morfologicheskie protsessy i opasnye gidrologicheskie yavleniya (River Estuaries of Caspian Basin: History of Formation, Modern Hydrological-Morphological Processes and Dangerous Hydrological Events), Mikhailov, V.N., Ed., Moscow: GEOS, 2013.Google Scholar
  29. Vysotskii, G.N., Izbrannye trudy (Selected Works), Moscow: Sel’khozgiz, 1960.Google Scholar
  30. Wilson, C.A. and Mitchell, F.B., A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean, J. Geophys. Res., 1987, vol. 92, pp. 13315–13343.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Water Problems InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations