Skip to main content
Log in

Strategies for Modulation of Pharmacokinetics of Recombinant Therapeutic Proteins

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The review describes current approaches to the optimization of pharmacokinetic properties of pharmaceutical proteins in order to achieve the maximum therapeutic effect. Examples of such technologies, including PEGylation, PEG mimetics, glycosylation, protein–protein fusion, and their advantages and limitations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abuchowski, A., Es, T., Palczuk, N.C., and Davis, F.F., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, J. Biol. Chem., 1977, vol. 252, no. 11, pp. 3578–3581.

    CAS  PubMed  Google Scholar 

  • Alvarez, P., Buscaglia, C., and Campetella, O., Improving protein pharmacokinetics by genetic fusion to simple amino acid sequences, J. Biol. Chem., 2004, vol. 279, no. 5, pp. 3375–3381.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, C., Perspective-FcRn transports albumin: relevance to immunology and medicine, Trends Immunol., 2006, vol. 27, pp. 343–348.

    Article  CAS  PubMed  Google Scholar 

  • Ashwell, G. and Morell, A., The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol. Relat. Areas Mol. Biol., 1974, vol. 41, pp. 99–128.

    CAS  PubMed  Google Scholar 

  • Avramis, V., Senser, S., and Periclou, A., A randomised comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a children’s risk cancer group study, Blood, 2002, vol. 99, pp. 1986–1994.

    Article  CAS  PubMed  Google Scholar 

  • Bailon, P., Palleroni, A., and Schaffer, C., Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C, Bioconjugate Chem., 2001, vol. 12, no. 2, pp. 195–202.

    CAS  Google Scholar 

  • Bendele, A., Seely, J., Richey, C., et al., Short communication: renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins, Toxicol. Sci., 1998, vol. 42, pp. 152–157.

    Article  CAS  PubMed  Google Scholar 

  • Binder, U. and Skerra, A., Half-life extension of therapeutic proteins via genetic fusion to recombinant PEG mimetics, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 63–80.

    Chapter  Google Scholar 

  • Booth, C. and Gaspar, H.B., Pegademase bovine (PEGADA) for the treatment of infants and children with severe combined immunodeficiency (SCID), Biol.: Targets Ther., 2009, vol. 3, pp. 349–358.

    CAS  Google Scholar 

  • Bouloux, P., First human exposure to FSH-CTP in hypogonadotrophic hypogonadal males, Hum. Reprod., 2001, vol. 16, pp. 1592–1597.

    Article  CAS  PubMed  Google Scholar 

  • Broudy, V. and Lin, N., AMG531 stimulates megakaryopoiesis in vitro by binding to Mpl, Cytokine, 2004, vol. 25, no. 2, pp. 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Buscaglia, C., Alfonso, J., Campetella, O., and Frasch, A., Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood, Blood, 1999, vol. 93, pp. 2025–2032.

    CAS  PubMed  Google Scholar 

  • Chapman, A., Antoniw, P., Spitali, M., et al., Therapeutic antibody fragments with prolonged in vivo half-lives, Nat. Biotechnol., 1999, vol. 17, pp. 780–783.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury, C., Albumin binding to FcRn: distinct from the FcRn–IgG interaction, Biochemistry, 2006, vol. 45, pp. 4983–4990.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, T., Wu, P., Wu, M., et al., Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM, Bioconjugate Chem., 1999, vol. 10, pp. 520–528.

    Article  CAS  Google Scholar 

  • Costa, A.R., Rodrigues, M.E., Henriques, M., et al., Glycosylation: impact, control and improvement during therapeutic protein production, Crit. Rev. Biotechnol., 2014, vol. 34, no. 4, pp. 281–299.

    CAS  PubMed  Google Scholar 

  • Creighton, T., Proteins: Structures and Molecular Properties, New York: W.H. Freeman, 1992. Czajkowsky, D.M., Hu, J., Shao, Z., and Pleass, R.J., Fcfusion proteins: new developments and future perspectives, EMBO Mol. Med., 2012, vol. 4, no. 10, pp. 1015–1028.

    Google Scholar 

  • De Vos, A., Ultsch, M., and Kossiakoff, A., Human growth hormone and extracellular domain of its receptor: crystal structure of the complex, Science, 1992, vol. 255, pp. 306–312.

    Article  PubMed  Google Scholar 

  • DeFrees, S., Wang, Z., Xing, R., et al., GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli, Glycobiology, 2006, vol. 16, pp. 833–843.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, J., Low, S., Peters, R., and Bitonti, A., Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics, BioDrugs, 2006, vol. 3, no. 20, pp. 151–160.

    Article  Google Scholar 

  • Economides, A., Carpenter, L., Rudge, J., et al., Cytokine traps: multi-component, high-affinity blockers of cytokine action, Nat. Med., 2003, vol. 9, no. 1, pp. 47–52.

    CAS  PubMed  Google Scholar 

  • Egrie, J., Dwyer, E., Browne, J., et al., Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin, Exp. Hematol., 2003, vol. 31, pp. 290–299.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, S., Lorenzini, T., Strickland, T., et al., Rational design of novel erythropoiesis stimulating protein (ARANESP): a super-sialated molecule with increased biological activity, Blood, 2000, vol. 96, no. 82, art. 352.

    Google Scholar 

  • Fares, F., Half-life extension through O-glycosylation, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 81–94.

    Chapter  Google Scholar 

  • Fee, C. and van Alstine, J.M., Prediction of the viscosity radius and the size-exclusion chromatography behavior of PEGylated proteins, Bioconjugate Chem., 2004, vol. 15, pp. 1304–1313.

    Article  CAS  Google Scholar 

  • Fee, C. and van Alstine, J.M., PEG-proteins: reaction engineering and separation issues, Chem. Eng. Sci., 2006, vol. 61, no. 3, pp. 924–939.

    Article  CAS  Google Scholar 

  • Flintegaard, T., Thygesen, P., Rahbek-Nielsen, H., et al., N-glycosylation increases the circulatory half-life of human growth hormone, Endocrinology, 2010, vol. 151, no. 11, pp. 5326–5336.

    Article  CAS  PubMed  Google Scholar 

  • Frejd, F., Half-life extension by binding to albumin through an albumin binding domain, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 233–278.

    Google Scholar 

  • Gaberc-Porekar, V., Zore, I., Podobnik, B., and Menart, V., Obstacles and pitfalls in the PEGylation of therapeutic proteins, Curr. Opin. Drug Discovery Dev., 2008, vol. 11, pp. 242–250.

    CAS  Google Scholar 

  • Geething, N., To, W., Spink, B., et al., Gcg-XTEN: an improved glucagon capable of preventing hypoglycemia without increasing baseline blood glucose, PLoS One, 2010, vol. 4, no. 5, pp. e10175.

    Article  Google Scholar 

  • Graham, L.M., PEGasparaginase: a review of clinical studies, Adv. Drug Delivery Rev., 2003, vol. 10, pp. 1293–1302.

    Article  Google Scholar 

  • Harris, J.M. and Chess, R.B., Effect of PEGylation on pharmaceuticals, Nat. Rev. Drug Discovery, 2003, vol. 2, no. 3, pp. 214–221.

    Article  CAS  PubMed  Google Scholar 

  • Hedayati, M.H., Norouzian, D., Aminian, M., et al., Molecular design, expression and evaluation of PASylated human recombinant erythropoietin with enhanced functional properties, Protein J., 2017, vol. 36, pp. 36–48.

    CAS  PubMed  Google Scholar 

  • Hershfield, M.S., Biochemistry and immunology of poly(ethylene glycol)-modified adenosine deaminase (PEG-ADA), ACS Symp. Ser., 1997, vol. 680, pp. 145–154.

    Article  CAS  Google Scholar 

  • Hinton, P., Johlfs, M., Xiong, J., et al., Engineered human IgG antibodies with longer serum half-lives in primates, J. Biol. Chem., 2004, vol. 279, no. 8, pp. 6213–6216.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, H., Throne, M., Amar, N., et al., Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies, Arthritis Rheumatol., 2008, vol. 58, no. 8, pp. 2443–2452.

    Article  CAS  Google Scholar 

  • Huang, C., Receptor-Fc fusion therapeutics, traps, and MIMETIBODYTM technology, Curr. Opin. Biotechnol., 2009, vol. 6, no. 20, pp. 692–699.

    Article  Google Scholar 

  • Huang, Y., Wen, X., Wu, Y., et al., Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer, Eur. J. Pharm. Biopharm., 2010, vol. 74, pp. 435–441.

    Article  CAS  PubMed  Google Scholar 

  • Kinstler, O., Molineux, G., Treuheit, M., et al., Mono-Nterminal poly(ethylene glycol)-protein conjugates, Adv. Drug Delivery Rev., 2002, vol. 54, no. 4, pp. 477–485.

    Article  CAS  Google Scholar 

  • Kontermann, R., Half-life modulating strategies—an introduction, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 3–21.

    Chapter  Google Scholar 

  • Kozlovski, A. and Harris, J., Improvements in protein PEGylation: PEGylated interferons for treatment of hepatitis C, J. Controlled Release, 2001, vol. 72, pp. 217–224.

    Article  Google Scholar 

  • Kuhn, N., Schmidt, C.Q., Schlapschy, M., and Skerra, A., PASylated coversin, a C5-specific complement inhibitor with extended pharmacokinetics, shows enhanced antihemolytic activity in vitro, Bioconjugate Chem., 2016, vol. 27, pp. 2359–2371.

    CAS  Google Scholar 

  • Kuo, T., Baker, K., Yoshida, M., et al., Neonatal Fc receptor: from immunity to therapeutics, J. Clin. Immunol., 2010, vol. 30, pp. 777–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuter, D., Bussel, J., Lyons, R., and Pullarkat, V., Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double blind randomized controlled trial, Lancet, 2008, vol. 371, pp. 395–403.

    Article  CAS  PubMed  Google Scholar 

  • Lapolt, P., Enhanced stimulation of follicle maturation and ovulatory potential by long acting follicle-stimulating hormone agonist with extended carboxyl-terminal peptide, Endocrinology, 1992, vol. 131, pp. 2514–2520.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. and McNemar, C., US Patent 5985263, 1999.

  • Mannucci, P.M., Half-life extension technologies for haemostatic agents, J. Thromb. Haemostasis, 2015, vol. 113, no. 1, pp. 165–176.

    Article  Google Scholar 

  • Matzuk, M., The biological role of the carboxyl-terminal extension of human chorionic gonadotropin beta-subunit, Endocrinology, 1990, vol. 126, pp. 376–383.

    Article  CAS  PubMed  Google Scholar 

  • Melder, R., Osborn, B., Riccobene, T., et al., Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice, Cancer Immunol., Immunother., 2005, vol. 54, pp. 535–547.

    Article  CAS  Google Scholar 

  • Mendler, C.T., Friedrich, L., Laitinen, I., et al., High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation, mAbs, 2015, vol. 7, pp. 96–109.

    Article  CAS  PubMed  Google Scholar 

  • Mero, A., Schiavon, M., Veronese, F., and Pasut, G., A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone, J. Controlled Release, 2011, vol. 154, pp. 27–34.

    Article  CAS  Google Scholar 

  • Metzner, H., Weimer, T., and Schulte, S., Half-life extension by fusion to recombinant albumin, in Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives, Kontermann, R., Ed., Chichester: Wiley, 2012, pp. 189–211.

    Google Scholar 

  • Monfardini, C., Schiavon, O., Caliceti, P., et al., A branched monomethoxypoly(ethylene glycol) for protein modification, Bioconjugate Chem., 1995, vol. 6, no. 1, pp. 62–69.

    Article  CAS  Google Scholar 

  • Morath, V., Bolze, F., Schlapschy, M., et al., PASylation of murine leptin leads to extended plasma half-life and enhanced in vivo efficacy, Mol. Pharmacol., 2015, vol. 12, pp. 1431–1442.

    Article  CAS  Google Scholar 

  • Morell, A., Gregoriadis, G., Scheinberg, I., et al., The role of sialic acid in determing the survival of glycoproteins in the circulation, J. Biol. Chem., 1971, vol. 246, no. 5, pp. 1461–1467.

    CAS  PubMed  Google Scholar 

  • Nucci, M.L., Shorr, R., and Abuchowski, A., The therapeutic value of poly(ethylene glycol)-modified proteins, Adv. Drug Delivery Rev., 1991, vol. 6, pp. 133–151.

    Article  CAS  Google Scholar 

  • Nygren, P., Uhlen, M., Flodby, P., et al., In vivo stabilization of a human recombinant CD4 derivative by fusion to a serum-albumin-binding receptor, Vaccines, 1991, vol. 11, pp. 363–368.

    Google Scholar 

  • Pascal, V., Laffleur, B., and Cogne, M., Class-specific effector functions of therapeutic antibodies, in Antibody Methods and Protocols, Proetzel, G. and Ebersbach, H., Eds., New York: Springer-Verlag, 2012, pp. 295–319.

    Chapter  Google Scholar 

  • Pasut, G. and Veronese, F., State of the art in PEGylation: the great versatility achieved after forty years of research, J. Controlled Release, 2012, vol. 161, pp. 461–472.

    Article  CAS  Google Scholar 

  • Peppel, K., Crawford, D., and Beutler, B., A tumour necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity, J. Exp. Med., 1991, vol. 174, pp. 1483–1489.

    Article  CAS  PubMed  Google Scholar 

  • Peters, R., Toby, G., Lu, Q., et al., Biochemical and functional characterisation of a recombinant monomeric factor VIII-Fc fusion protein, J. Thromb. Haemostasis, 2012, vol. 11, pp. 132–141.

    Article  Google Scholar 

  • Peters, T., All About Albumin: Biochemistry, Genetics, and Medical Applications, San Diego: Academic, 1996.

    Google Scholar 

  • Podusta, V.N., Balana, S., Sima, B.C., et al., Extension of in vivo half-life of biologically active molecules by XTEN protein polymers, J. Controlled Release, 2016, vol. 240, pp. 52–66.

    Article  Google Scholar 

  • Roopenian, D. and Akilesh, S., FcRn: the neonatal Fc receptor comes of age, Nat. Rev. Immunol., 2007, vol. 7, pp. 715–725.

    Article  CAS  PubMed  Google Scholar 

  • Rosenstock, J., Reusch, J., Bush, M., et al., Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomised controlled trial exploring weekly, biweekly, and monthly dosing, Diabetes Care, 2009, vol. 32, pp. 1880–1886.

    CAS  PubMed  Google Scholar 

  • Schellenberger, V., US Patent 7855279B2, 2010.

  • Schellenberger, V., Wang, C.W., Geething, N.C., et al., A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner, Nat. Biotechnol., 2009, vol. 27, pp. 1186–1190.

    Article  CAS  PubMed  Google Scholar 

  • Schlapschy, M., Theobald, I., Mack, H., et al., Fusion of a recombinant antibody fragment with a homo-aminoacid polymer: effects on biophysical properties and prolonged plasma half-life, Protein Eng., Des. Sel., 2007, vol. 20, pp. 273–284.

    Article  CAS  Google Scholar 

  • Schlapschy, M., Binder, U., Borger, C., et al., PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins, Protein Eng., Des. Sel., 2013, vol. 26, no. 8, pp. 1–13.

    Article  Google Scholar 

  • Schlesinger, P., Rodman, J., Doebber, T., et al., The role of extrahepatic tissues in the receptor-mediated plasma clearance of glycoproteins terminated by mannose or N-acetylglucosamine, Biochem. J., 1980, vol. 192, no. 2, pp. 597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman, M., Saifer, M., and Perez-Ruiz, F., PEG-uricase in the management of treatment-resistant gout and hyperuricemia, Adv. Drug Delivery Rev., 2008, vol. 60, no. 1, pp. 59–68.

    Article  CAS  Google Scholar 

  • Shimamoto, G., Gegg, C., Boone, T., and Quéva, C., Peptibodies: a flexible alternative format to antibodies, mAbs, 2012, vol. 4, no. 5, pp. 586–591.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sleep, D., Cameron, J., and Evans, L., Albumin as a versatile platform for drug half-life extension, Biochim. Biophys. Acta, 2013, vol. 1830, no. 12, pp. 5526–5534.

    Article  CAS  PubMed  Google Scholar 

  • Sola, R. and Griebenow, K., Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy, Bio- Drugs, 2010, vol. 24, no. 1, pp. 9–21.

    CAS  Google Scholar 

  • Stork, R., Muller, D., and Kontermann, R., A novel trifunctional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific singlechain diabody with an albumin binding domain from streptococcal protein G, Protein Eng., Des. Sel., 2007, vol. 20, no. 11, pp. 569–576.

    Article  CAS  Google Scholar 

  • Strober, B. and Menon, K., Alefacept for the treatment of psoriasis and other dermatological diseases, Dermatol. Ther., 2007, vol. 20, pp. 270–276.

    Article  PubMed  Google Scholar 

  • Strohl, W.R., Fusion proteins for half-life extension of biologics as a strategy to make biobetters, BioDrugs, 2015, vol. 29, no. 4, pp. 215–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian, G., Fiscella, M., Lamouse-Smith, A., et al., Albinterferon a-2b: a genetic fusion protein for the treatment of chronic hepatitis C, Nat. Biotechnol., 2007, vol. 25, no. 12, pp. 1411–1419.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, M., Inoue, N., Strickland, T., et al., Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 7819–7822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibbitts, J., Canter, D., Graff, R., et al., Key factors influencing ADME properties of therapeutic proteins: a need for ADME characterization in drug discovery and development, mAbs, 2016, vol. 8, no. 2, pp. 229–245.

    Article  CAS  PubMed  Google Scholar 

  • Tiede, A., Brand, B., Fischer, R., et al., Enchancing the pharmacokinetic properties of recombinant factor VIII: first-inhuman trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A, J. Thromb. Haemostasis, 2013, vol. 11, pp. 670–678.

    Article  CAS  Google Scholar 

  • Tracey, D., Klareskog, L., Sasso, E., et al., Tumor necrosis factor antagonist mechanisms of action: a comprehensive review, Pharmacol. Ther., 2008, vol. 117, no. 2, pp. 244–279.

    Article  CAS  PubMed  Google Scholar 

  • Trussel, S., Dumelin, C., Frey, K., et al., New strategy for the extension of serum half-life of antibody fragments, Bioconjugate Chem., 2009, vol. 20, pp. 2286–2292.

    Article  CAS  Google Scholar 

  • Tsuda, E., Kawanishi, G., Ueda, M., et al., The role of carbohydrate in recombinant human erythropoietin, Eur. J. Biochem., 1990, vol. 188, pp. 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Vaughn, D. and Bjorkman, P., Structural basis of pHdependent antibody binding by the neonatal Fc receptor, Structure, 1998, vol. 6, pp. 63–73.

    Article  CAS  PubMed  Google Scholar 

  • Veronese, F. and Mero, A., The impact of PEGylation on biological therapies, BioDrugs, 2008, vol. 22, no. 5, pp. 315–329.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y.S., Youngster, S., Grace, M., et al., Structural and biological characterization of PEGylated recombinant interferon a-2b and its therapeutic implications, Adv. Drug Delivery Rev., 2002, vol. 54, no. 4, pp. 547–570.

    Article  CAS  Google Scholar 

  • Weimer, T., Wormsbacher, W., Kronthaler, U., et al., Prolonged in vivo half-life of factor VIIa by fusion to albumin, Thromb. Haemostasis, 2008, vol. 99, pp. 659–667.

    Article  CAS  Google Scholar 

  • Wylie, D.C., Voloch, M., Lee, S., et al., Carboxyalkylated histidine is a pH-dependent product of pegylation with SC-PEG, Pharm. Res., 2001, vol. 18, no. 9, pp. 1354–1360.

    Article  CAS  PubMed  Google Scholar 

  • Yeung, Y., Wu, X., Reyes, A., et al., A therapeutic anti- VEGF antibody with increased potency independent of pharmacokinetic half-life, Cancer Res., 2010, vol. 70, no. 8, pp. 3269–3277.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, X. and Somers, W., Recent advances in glycosylation modifications in the context of therapeutic glycoproteins, in Integrative Proteomics, Leung, H.C.E., Man, T.K., and Flores, R.J., Eds., Rijeka: InTech, 2012, pp. 183–196.

    Google Scholar 

  • Zvonova, E., Ershov, A., Ershova, O., et al., PASylation technology improves recombinant interferon-β1b solubility, stability and biological activity, App. Microbiol. Biotech., 2017, vol. 101, pp. 1975–1987.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Goldenkova-Pavlova.

Additional information

Original Russian Text © E.A. Zvonova, A.A. Tyurin, A.A. Soloviev, I.V. Goldenkova-Pavlova, 2017, published in Uspekhi Sovremennoi Biologii, 2017, Vol. 137, No. 4, pp. 398–419.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvonova, E.A., Tyurin, A.A., Soloviev, A.A. et al. Strategies for Modulation of Pharmacokinetics of Recombinant Therapeutic Proteins. Biol Bull Rev 8, 124–141 (2018). https://doi.org/10.1134/S2079086418020093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086418020093

Keywords

Navigation