Biology Bulletin Reviews

, Volume 6, Issue 6, pp 483–496 | Cite as

Immunity against Mycobacterium tuberculosis: Defense strategies



Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that mainly affects alveolar macrophages. We have still no satisfactory vaccine against tuberculosis, and more than one-third of the global population are carriers of this pathogen. For the development of a vaccine that would induce not only humoral but, particularly, cell-mediated immunity, we must know all of the processes involved in the interaction between elements of the immune system and Mtb at all stages of the disease. This review considers the responses of immune system elements to various factors used by Mtb for cell invasion, survival, and reproduction.


Mycobacterium tuberculosis intracellular pathogens macrophages interaction with receptors cytokines T cells CD4+ cells CD8+ cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aliprantis, A.O., Yang, R.B., Mark, M.R., et al., Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2, Science, 1999, vol. 285, pp. 736–739.PubMedCrossRefGoogle Scholar
  2. Altare, F., Lammas, D., Revy, P., et al., Inherited interleukin 12 deficiency in a child with bacille Calmette- Guerin and Salmonella enteritidis disseminated infection, J. Clin. Invest., 1998, vol. 102, pp. 2035–2040.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andersen, P., Host responses and antigens involved in protective immunity to Mycobacterium tuberculosis, Scand. J. Immunol., 1997, vol. 45, pp. 115–131.PubMedCrossRefGoogle Scholar
  4. Balcewicz-Sablinska, M.K., Keane, J., Kornfeld, H., and Remold, H.G., Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-α, J. Immunol., 1998, vol. 161, pp. 2636–2641.PubMedGoogle Scholar
  5. Banchereau, J. and Steinman, R.M., Dendritic cells and the control of immunity, Nature, 1998, vol. 392, pp. 245–252.PubMedCrossRefGoogle Scholar
  6. Barnes, P.F., Leedom, J.M., Chan, L.S., et al., Predictors of short-term prognosis in patients with pulmonary tuberculosis, J. Infect. Dis., 1988, vol. 158, pp. 366–371.PubMedCrossRefGoogle Scholar
  7. Barnes, P.F., Samten, B., Shams, H., and Vankayalapatib, R., Progress in understanding the human immune responses to Mycobacterium tuberculosis, Tuberculosis, 2009, vol. 89, pp. S5–S9.PubMedCrossRefGoogle Scholar
  8. Bayry, J., Tchilian, E.Z., Davies, M.N., et al., In silico identified CCR4 antagonists target regulatory T-cells and exert adjuvant activity in vaccination, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 10221–10226.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Behar, B.M., The next generation: tuberculosis vaccines that elicit protective CD8+ T-cells, Exp. Rev. Vaccines, 2007, vol. 6, no. 3, pp. 441–456.CrossRefGoogle Scholar
  10. Behar, S.M., Antigen-specific CD8+ T-cells and protective immunity to tuberculosis. The new paradigm of immunity to tuberculosis, Adv. Exp. Med. Biol., 2013, vol. 783, pp. 141–164.PubMedCrossRefGoogle Scholar
  11. Bekker, L.G., Maartens, G., Steyn, L., and Kaplan, G., Selective increase in plasma tumor necrosis factoralpha and concomitant clinical deterioration after initiating therapy in patients with severe tuberculosis, J. Infect. Dis., 1998, vol. 178, pp. 580–584.PubMedCrossRefGoogle Scholar
  12. Bergeron, A., Bonay, M., Kambouchner, M., et al., Cytokine patterns in tuberculous and sarcoid granulomas: correlations with histopathologic features of the granulomatous response, J. Immunol., 1997, vol. 159, pp. 3034–3043.PubMedGoogle Scholar
  13. Bermudez, L.E. and Goodman, J., Mycobacterium tuberculosis invades and replicates within type II alveolar cells, Infect. Immun., 1996, vol. 64, pp. 1400–1406.PubMedPubMedCentralGoogle Scholar
  14. Bettelli, E., Korn, T., Oukka, M., and Kuchroo, V.K., Induction and effector functions of Th17 cells, Nature, 2008, vol. 453, pp. 1051–1057.PubMedCrossRefGoogle Scholar
  15. Bosio, C.M., Gardner, D., and Elkins, K.L., Infection of B-cell-deficient mice with CDC1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology, J. Immunol., 2000, vol. 164, pp. 6417–6425.PubMedCrossRefGoogle Scholar
  16. Boussiotis, V.A., Tsai, E.Y., Yunis, E.J., et al., IL-10-producing T-cells suppress immune responses in anergic tuberculosis patients, J. Clin. Invest., 2000, vol. 105, pp. 1317–1325.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brightbill, H.D., Libraty, D.H., Krutzik, S.R., et al., Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors, Science, 1999, vol. 285, pp. 732–736.PubMedCrossRefGoogle Scholar
  18. Brill, K.J., Li, Q., Larkin, R., Canaday, D.H., et al., Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule-independent mechanisms, Infect. Immun., 2001, vol. 69, pp. 1755–1765.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Byrd, S.R., Gelber, R., and Bermudez, L.E., Roles of soluble fibronectin and beta 1 integrin receptors in the binding of Mycobacterium leprae to nasal epithelial cells, Clin. Immunol. Immunopathol., 1993, vol. 69, pp. 266–271.PubMedCrossRefGoogle Scholar
  20. Calmette, A., Preventive vaccination against tuberculosis with BCG and the Lübeck casualties, J. Am. Med. Assoc., 1931, vol. 96, pp. 58–59.CrossRefGoogle Scholar
  21. Campos-Neto, A., Ovendale, P., Bement, T., et al., CD40 ligand is not essential for the development of cell-mediated immunity and resistance to Mycobacterium tuberculosis, J. Immunol., 1998, vol. 160, pp. 2037–2041.PubMedGoogle Scholar
  22. Carlos, D., Frantz, F.G., Souza-Júnior, D.A., et al., TLR2- dependent mast cell activation contributes to the control of Mycobacterium tuberculosis infection, Microbes Infect., 2009, vol. 11, pp. 770–778.PubMedCrossRefGoogle Scholar
  23. Caruso, A.M., Mice deficient in CD4+ T-cells have only transiently diminished levels of IFN-γ, yet succumb to tuberculosis, J. Immunol., 1999, vol. 162, pp. 5407–5416.PubMedGoogle Scholar
  24. Chen, C.Y., Huang, D., Wang, R.C., et al., A critical role for CD8+ T-cells in a nonhuman primate model of tuberculosis, PLoS Pathog., 2009, vol. 5, no. 4, p. e1000392.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen, J., Chen, Z., Chintagari, N.R., et al., Alveolar type I cells protect rat lung epithelium from oxidative injury, J. Physiol., 2006, vol. 572, pp. 625–638.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chiacchio, T., Casetti, R., Butera, O., et al., Characterization of regulatory T-cells identified as CD4(+)CD25(high) CD39(+) in patients with active tuberculosis, Clin. Exp. Immunol., 2009, vol. 156, pp. 463–470.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cho, S., Mehra, V., Thoma-Uszynski, S., et al., Antimicrobial activity of MHC class I-restricted CD8+ T-cells in human tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 12210–12215.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chroneos, Z.C., Sever-Chroneos, Z., and Shepherd, V.L., Pulmonary surfactant: an immunological perspective, Cell Physiol. Biochem., 2010, vol. 25, pp. 13–26.PubMedCrossRefGoogle Scholar
  29. Clarke, S.R.M., The critical role of CD40/CD40L in the CD4-dependent generation of CD8II+ T-cell immunity, J. Leukocyte Biol., 2000, vol. 67, pp. 607–614.PubMedGoogle Scholar
  30. Cooper, A.M., Dalton, D.K., Stewart, T.A., et al., Disseminated tuberculosis in IFN-γ gene-disrupted mice, J. Exp. Med., 1993, vol. 178, pp. 2243–2248.PubMedCrossRefGoogle Scholar
  31. Crevel van, R., Ven-Jongekrijg van der, J., Netea, M.G., et al., Disease-specific ex vivo stimulation of whole blood for cytokine production: applications in the study of tuberculosis, J. Immunol. Methods, 1999, vol. 222, pp. 145–153.CrossRefGoogle Scholar
  32. Crevel van, R., Vonk, A.G., Netea, M.G., et al., Modulation of LPS-, PHA-and M. tuberculosis-mediated cytokine production by pentoxifylline and thalidomide, Eur. Cytokine Network, 2000, vol. 11, pp. 574–579.Google Scholar
  33. Crevel van, R., Ottenhoff, T.H.M., and Meer van der, W.M., Innate immunity to Mycobacterium tuberculosis, Clin. Microbiol. Rev., 2002, vol. 15, no. 2, pp. 294–311.CrossRefGoogle Scholar
  34. Crowle, A.J. and Elkins, N., Relative permissiveness of macrophages from black and white people for virulent tubercle bacilli, Infect. Immun., 1990, vol. 58, no. 3, pp. 632–638.PubMedPubMedCentralGoogle Scholar
  35. Dahl, K.E., Shiratsuchi, H., Hamilton, B.D., et al., Selective induction of transforming growth factor-ß in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis, Infect. Immun., 1996, vol. 64, pp. 399–405.PubMedPubMedCentralGoogle Scholar
  36. Dannenberg, A.M., Pathogenesis of Human Pulmonary Tuberculosis: Insights from the Rabbit Model, Washington, DC: Am. Soc. Microbiol., 2006.CrossRefGoogle Scholar
  37. De Jong, R., Altare, F., Haagen, I.A., et al., Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients, Science, 1998, vol. 280, pp. 1435–1438.PubMedCrossRefGoogle Scholar
  38. Debbabi, H., Ghosh, S., Kamath, A.B., et al., Primary type II alveolar epithelial cells present microbial antigens to antigen-specific CD4+ T-cells, Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, vol. 289, pp. 274–279.CrossRefGoogle Scholar
  39. Dheda, K., Schwander, S.K., Zhu, B., et al., The immunology of tuberculosis: from bench to bedside, Respirology, 2010, vol. 15, no. 3, pp. 433–450.PubMedCrossRefGoogle Scholar
  40. Dinarello, C.A., Biologic basis for interleukin-1 in disease, Blood, 1996, vol. 87, pp. 2095–2147.PubMedGoogle Scholar
  41. Ding, A., Nathan, C.F., Graycar, J., et al., Macrophage deactivation factor and TFG-γ inhibition of macrophage nitrogen oxidesynthesis by IFN-γ, J. Immunol., 1990, vol. 145, pp. 940–945.PubMedGoogle Scholar
  42. Dorhoi, A. and Kaufmann, S.H.E., Fine-tuning of T-cell responses during infection, Curr. Opin. Immunol., 2009, vol. 21, pp. 367–377.PubMedCrossRefGoogle Scholar
  43. Dorman, S.E. and Holland, S.M., Mutation in the signaltransducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection, J. Clin. Invest., 1998, vol. 101, pp. 2364–2369.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Downing, J.F., Pasula, R., Wright, J.R., et al., Surfactant protein a promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 4848–4852.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ferguson, J.S., Voelker, D.R., McCormack, F.X., and Schlesinger, L.S., Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages, J. Immunol., 1999, vol. 163, pp. 312–321.PubMedGoogle Scholar
  46. Ferwerda, G., Girardin, S.E., Kullberg, B.J., et al., NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis, PLoS Pathog., 2005, vol. 1, no. 3, p. e34.PubMedCentralCrossRefGoogle Scholar
  47. Fine, P.E., Variation in protection by BCG: implications of and for heterologous immunity, Lancet, 1995, vol. 346, pp. 1339–1345.PubMedCrossRefGoogle Scholar
  48. Flynn, J.L., Mutual attraction: does it benefit the host or the bug? Nat. Immunol., 2004, vol. 5, pp. 778–779.PubMedCrossRefGoogle Scholar
  49. Flynn, J.L. and Chan, J., Immunology of tuberculosis, Annu. Rev. Immunol., 2001, vol. 19, pp. 93–129.PubMedCrossRefGoogle Scholar
  50. Frucht, D.M. and Holland, S.M., Defective monocyte costimulation for IFN-gamma production in familial disseminated Mycobacterium avium complex infection: abnormal IL-12 regulation, J. Immunol., 1996, vol. 157, pp. 411–416.PubMedGoogle Scholar
  51. Fulton, S.A., Johnsen, J.M., Wolf, S.F., et al., Interleukin-12 production by human monocytes infected with Mycobacterium tuberculosis: role of phagocytosis, Infect. Immun., 1996, vol. 64, pp. 2523–2531.PubMedPubMedCentralGoogle Scholar
  52. Garg, A., Barnes, P.F., Porgador, A., et al., Vimentin, expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor, J. Immunol., 2006, vol. 177, pp. 6192–6198.PubMedCrossRefGoogle Scholar
  53. Geluk, A., Meijgaarden van, K.E., Franken, K.L., et al., Identification of major epitopes of Mycobacterium tuberculosis AG85B that are recognized by HLAA* 0201-restricted CD8+ T-cells in HLA-transgenic mice and humans, J. Immunol., 2000, vol. 165, pp. 6463–6471.PubMedCrossRefGoogle Scholar
  54. Gercken, J., Pryjma, J., Ernst, M., and Flad, H.D., Defective antigen presentation by Mycobacterium tuberculosis-infected monocytes, Infect. Immun., 1994, vol. 62, pp. 3472–3478.PubMedPubMedCentralGoogle Scholar
  55. Global Tuberculosis Report 2013, Geneva: World Health Org., 2013.Google Scholar
  56. Goldfeld, A.E., Delgado, J.C., Thim, S., et al., Association of an HLA-DQ allele with clinical tuberculosis, J. Am. Med. Assoc., 1998, vol. 279, pp. 226–228.CrossRefGoogle Scholar
  57. Gong, G., Shao, L., Wang, Y., et al., Phosphoantigen-activated V-gamma-2V-delta-2 T-cells antagonize IL-2-induced CD4+CD25+Foxp3+ T-regulatory cells in mycobacterial infection, Blood, 2009, vol. 113, pp. 837–845.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gong, J.H., Zhang, M., Modlin, R.L., et al., Interleukin-10 downregulates Mycobacterium tuberculosis-induced Th1 responses and CTLA4 expression, Infect. Immun., 1996, vol. 64, pp. 913–918.PubMedPubMedCentralGoogle Scholar
  59. Henderson, R.A., Watkins, S.C., and Flynn, J.L., Activation of human dendritic cells following infection with Mycobacterium tuberculosis, J. Immunol., 1997, vol. 159, pp. 635–643.PubMedGoogle Scholar
  60. Herrmann, J.L. and Lagrange, P.H., Dendritic cells and Mycobacterium tuberculosis: which is the Trojan horse? Pathol. Biol., 2005, vol. 53, no. 1, pp. 35–40.PubMedCrossRefGoogle Scholar
  61. Heyningen van, T.K., Collins, H.L., and Russell, D.G., IL-6 produced by macrophages infected with Mycobacterium species suppresses T-cell responses, J. Immunol., 1997, vol. 158, pp. 330–337.Google Scholar
  62. Hirsch, C.S., Ellner, J.J., Blinkhorn, R., and Toossi, Z., In vitro restoration of T-cell responses in tuberculosis and augmentation of monocyte effector function against Mycobacterium tuberculosis by natural inhibitors of transforming growth factor beta, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 3926–3931.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hirsch, C.S., Ellner, J.J., Russell, D.G., and Rich, E.A., Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages, J. Immunol., 1994, vol. 152, pp. 743–753.PubMedGoogle Scholar
  64. Hirsch, C., Toossi, Z., Johnson, J.L., et al., Augmentation of apoptosis and interferon-gamma production at sites of active Mycobacterium tuberculosis infection in human tuberculosis, J. Infect. Dis., 2001, vol. 183, pp. 779–788.PubMedCrossRefGoogle Scholar
  65. Hirsch, C., Toossi, Z., Vanham, G., et al., Apoptosis and T-cell hyporesponsiveness in pulmonary tuberculosis, J. Infect. Dis., 1999, vol. 179, pp. 945–953.PubMedCrossRefGoogle Scholar
  66. Holland, S.M., Dorman, S.E., Kwon, A., et al., Abnormal regulation of interferon-gamma, interleukin-12, and tumor necrosis factor-alpha in human interferongamma receptor 1 deficiency, J. Infect. Dis., 1998, vol. 178, pp. 1095–1104.PubMedCrossRefGoogle Scholar
  67. Iho, S., Yamamoto, T., Takahashi, T., and Yamamoto, S., Oligodeoxynucleotides containing palindrome sequences with internal 5'-CpG-3' act directly on human NK and activated T-cells to induce IFN-gamma production in vitro, J. Immunol., 1999, vol. 163, pp. 3642–3652.PubMedGoogle Scholar
  68. Jaron, B., Maranghi, E., Leclerc, C., and Majlessi, L., Effect of attenuation of Treg during BCG immunization on antimycobacterial Th1-responses and protection against Mycobacterium tuberculosis, PLoS One 2008, vol. 3, p. e2833PubMedPubMedCentralCrossRefGoogle Scholar
  69. Joosten, S.A. and Ottenhoff, T.H., Human CD4+ and CD8+ regulatory T-cells in infectious diseases and vaccination, Hum. Immunol., 2008, vol. 69, pp. 760–770.PubMedCrossRefGoogle Scholar
  70. Jouanguy, E.M., Altare, F., Lamhamedi, S., et al., Interferonc- receptor deficiency in an infant with fatal bacille Calmette-Guerin infection, N. Engl. J. Med., 1996, vol. 335, pp. 1956–1961.PubMedCrossRefGoogle Scholar
  71. Juffermans, N.P., Florquin, S., Camoglio, L., et al., Interleukin- 1 signaling is essential for host defense during murine pulmonary tuberculosis, J. Infect. Dis., 2000, vol. 182, pp. 902–908.PubMedCrossRefGoogle Scholar
  72. Juffermans, N.P., Verbon, A., Deventer van, S.J.H., et al., Serum concentrations of lipopolysaccharide activitymodulating proteins during tuberculosis, J. Infect. Dis., 1998a, vol. 178, pp. 1839–1842.PubMedCrossRefGoogle Scholar
  73. Juffermans, N.P., Verbon, A., Deventer van, S.J.H., et al., Tumor necrosis factor and interleukin-1 inhibitors as markers of disease activity of tuberculosis, Am. J. Respir. Crit. Care Med., 1998b, vol. 157, pp. 1328–1331.PubMedCrossRefGoogle Scholar
  74. Kaneko, H., Yamada, H., Mizuno, S., et al., Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice, Lab. Invest., 1999, vol. 79, pp. 379–386.PubMedGoogle Scholar
  75. Katsube, T., Matsumoto, S., Takatsuka, M., et al., Control of cell wall assembly by a histone-like protein in mycobacteria, J. Bacteriol., 2007, vol. 189, no. 22, pp. 8241–8249.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kaufmann, S.H., Tuberculosis: back on the immunologists’ agenda, Immunity, 2006, vol. 24, pp. 351–357.PubMedCrossRefGoogle Scholar
  77. Kaufmann, S.H. and Schaible, U.E., A dangerous liaison between two major killers: Mycobacterium tuberculosis and HIV target dendritic cells through DC-SIGN, J. Exp. Med., 2003, vol. 197, pp. 1–5.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kaufmann, S.H. and Schaible, U.E., Antigen presentation and recognition in bacterial infections, Curr. Opin. Immunol., 2005, vol. 17, pp. 79–87.PubMedCrossRefGoogle Scholar
  79. Kennedy, M.K. and Park, L.S., Characterization of interleukin-15 (IL-15) and the IL-15 receptor complex, J. Clin. Immunol., 1996, vol. 16, pp. 134–143.PubMedCrossRefGoogle Scholar
  80. Kindler, V., Sappino, A.P., Grau, G.E., et al., The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection, Cell, 1989, vol. 56, pp. 731–740.PubMedCrossRefGoogle Scholar
  81. Kobayashi, K., Kai, M., Gidoh, M., et al., The possible role of interleukin (IL)-12 and interferon-gamma-inducing factor/IL-18 in protection against experimental Mycobacterium leprae infection in mice, Clin. Immunol. Immunopathol., 1998, vol. 88, pp. 226–231.PubMedCrossRefGoogle Scholar
  82. Koch, A., The global tuberculosis situation and the new control strategy of the World Health Organization, Bull. World Health Org., 2001, vol. 79, pp. 71–75.Google Scholar
  83. Korbel, D.S., Schneider, B.E., and Schaible, U.E., Innate immunity in tuberculosis: myths and truth, Microbes Infect., 2008, vol. 10, pp. 995–1004.PubMedCrossRefGoogle Scholar
  84. Kursar, M., Koch, M., Mittrücker, H.W., et al., Cutting edge: regulatory T-cells prevent efficient clearance of Mycobacterium tuberculosis, J. Immunol., 2007, vol. 178, pp. 2661–2665.PubMedCrossRefGoogle Scholar
  85. Law, K., Weiden, M., Harkin, T., et al., Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis, Am. J. Respir. Crit. Care Med., 1996, vol. 153, pp. 799–804.PubMedCrossRefGoogle Scholar
  86. Lewinsohn, D.M., Alderson, M.R., Briden, A.L., et al., Characterization of human CD8+ T-cells reactive with Mycobacterium tuberculosis-infected antigen-presenting cells, J. Exp. Med., 1998, vol. 187, pp. 1633–1640.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lewinsohn, D.A., Heinzel, A.S., Gardner, J.M., et al., Mycobacterium tuberculosis-specific CD8+ T-cells preferentially recognize heavily infected cells, Am. J. Respir. Crit. Care Med., 2003, vol. 168, pp. 1346–1352.PubMedCrossRefGoogle Scholar
  88. Li, L. and Wu, C.Y., CD4(+)CD25(+) Treg cells inhibit human memory gamma delta T-cells to produce IFNgamma in response to M. tuberculosis antigen ESAT-6, Blood, 2008, vol. 111, pp. 5629–5636.PubMedCrossRefGoogle Scholar
  89. Lund, F.E. and Randall, T.D., Effector and regulatory Bcells: modulators of CD4(+) T-cell immunity, Nat. Rev. Immunol., 2010, vol. 10, pp. 236–247.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Maglione, P.J. and Chan, J., How B-cells shape the immune response against Mycobacterium tuberculosis, Eur. J. Immunol., 2009, vol. 39, pp. 676–686.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Martineau, A.R., Newton, S.M., Wilkinson, K.A., et al., Neutrophil-mediated innate immune resistance to mycobacteria, J. Clin. Invest., 2007, vol. 117, pp. 1988–1994.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mayer, A.K., Muehmer, M., Mages, J., et al., Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells, J. Immunol., 2007, vol. 178, pp. 3134–3142.PubMedCrossRefGoogle Scholar
  93. Mazzaccaro, R.J., Gedde, M., Jensen, E.R., et al., Major histocompatibility class I presentation of soluble antigen facilitated by Mycobacterium tuberculosis infection, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 11786–11791.PubMedPubMedCentralCrossRefGoogle Scholar
  94. McClellan, K.B., Gangappa, S., Speck, S.H., and Virgin, H.W., Antibody-independent control of gamma-herpesvirus latency via B-cell induction of anti-viral T-cell responses, PLoS Pathog., 2006, vol. 2, p. e58.PubMedPubMedCentralCrossRefGoogle Scholar
  95. McDonough, K.A., Kress, Y., and Bloom, B.R., Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages, Infect. Immun., 1993, vol. 61, pp. 2763–2773.PubMedPubMedCentralGoogle Scholar
  96. Mihret, A., The role of dendritic cells in Mycobacterium tuberculosis infection, Virulence, 2012, vol. 3, pp. 654–659.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mogues, T., Goodrich, M.E., Ryan, L., et al., The relative importance of T-cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice, J. Exp. Med., 2001, vol. 193, pp. 271–280.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mohagheghpour, N., Vollenhoven van, A., Goodman, J., and Bermudez, L.E., Interaction of Mycobacterium avium with human monocyte-derived dendritic cells, Infect. Immun., 2000, vol. 68, pp. 5824–5849.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mohan, V.P., Scanga, C.A., Yu, K., et al., Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology, Infect. Immun., 2001, vol. 69, pp. 1847–1855.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Muller, I., Cobbold, S.P., Waldmann, H., and Kaufmann, S.H., Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt2+ T-cells, Infect. Immunol., 1987, vol. 55, pp. 2037–2041.Google Scholar
  101. Murray, P.J., Wang, L., Onufryk, C., et al., T-cell-derived IL-10 antagonizes macrophage function in mycobacteria infection, J. Immunol., 1997, vol. 158, pp. 315–321.PubMedGoogle Scholar
  102. Netea, M.G., Kullberg, B.J., Verschueren, I., and Meer van der, J.W., Interleukin-18 induces production of proinflammatory cytokines in mice: no intermediate role for the cytokines of the tumor necrosis factor family and interleukin-1beta, Eur. J. Immunol., 2000, vol. 30, pp. 3057–3060.PubMedCrossRefGoogle Scholar
  103. Newport, M.J., Huxley, C.M., Huston, S., et al., A mutation in the interferon-c-receptor gene and susceptibility to mycobacterial infection, N. Engl. J. Med., 1996, vol. 335, pp. 1941–1949.PubMedCrossRefGoogle Scholar
  104. North, R.J., Mice incapable of making IL-4 and IL-10 display normal resistance in infection with Mycobacterium tuberculosis, Clin. Exp. Immunol., 1998, vol. 113, pp. 55–58.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Noss, E.H., Harding, C.V., and Boom, W.H., Mycobacterium tuberculosis inhibits MHC class II antigen processing in murine bone marrow macrophages, Cell Immunol., 2000, vol. 201, pp. 63–74.PubMedCrossRefGoogle Scholar
  106. Oddo, M., Renno, T., Attinger, A., et al., Fas ligandinduced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis, J. Immunol., 1998, vol. 160, pp. 5448–5454.PubMedGoogle Scholar
  107. O’Neill, L.A. and Greene, C., Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants, J. Leukocyte Biol., 1998, vol. 63, pp. 650–657.PubMedGoogle Scholar
  108. Oppmann, B., Lesley, R., Blom, B., et al., Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12, Immunity, 2000, vol. 13, pp. 715–725.PubMedCrossRefGoogle Scholar
  109. Orme, I.M. and Cooper, A.M., Cytokine/chemokine cascades in immunity to tuberculosis, Immunol. Today, 1999, vol. 20, pp. 307–312.PubMedCrossRefGoogle Scholar
  110. Ottenhoff, T.H.M., Kumararatne, D., and Casanova, J.L., Novel human immunodeficiencies reveal the essential role of type-1 cytokines in immunity to intracellular bacteria, Immunol. Today, 1998, vol. 19, pp. 491–494.PubMedCrossRefGoogle Scholar
  111. Ozinsky, A., Underhill, D.M., Fontenot, J.D., et al., The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 13766–13771.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Pancholi, P., Mirza, A., Bhardwaj, N., and Steinman, R.M., Sequestration from immune CD4+ T-cells of mycobacteria growing in human macrophages, Science, 1993, vol. 260, pp. 984–986.PubMedCrossRefGoogle Scholar
  113. Pechkovsky, D.V., Goldmann, T., Ludwig, C., et al., CCR2 and CXCR3 agonistic chemokines are differently expressed and regulated in human alveolar epithelial cells type II, Respir. Res., 2005, vol. 6, p. 75.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Persson, Y.A.Z., Blomgran-Julinder, R., Rahman, S., et al., Mycobacterium tuberculosis-induced apoptotic neutrophils trigger a pro-inflammatory response in macrophages through release of heat shock protein 72, acting in synergy with the bacteria, Microbes Infect., 2008, vol. 10, pp. 233–240.PubMedCrossRefGoogle Scholar
  115. Pieters, J., Mycobacterium tuberculosis and the macrophage: maintaining a balance, Cell Press, 2008, vol. 3, pp. 399–407.Google Scholar
  116. Pinxteren van, L.A., Cassidy, J.P., Smedegaard, B.H., et al., Control of latent Mycobacterium tuberculosis infection is dependent on CD8+ T-cells, Eur. J. Immunol., 2000, vol. 30, no. 12, pp. 3689–3698.CrossRefGoogle Scholar
  117. Popova, N.A., Novaya immunologiya (New Immunology), Novosibirsk: Novosib. Gos. Univ., 2012.Google Scholar
  118. Rahman, S., Gudetta, B., Fink, J., et al., Compartmentalization of immune responses in human tuberculosis few CD8 + effector T-cells, but elevated levels of FbxP3 + regulatory T-cells in the granulomatous lesions, Am. J. Pathol., 2009, vol. 174, pp. 2211–2224.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rajashree, P., Supriya, P., and Das, S.D., Differential migration of human monocyte-derived dendritic cells after infection with prevalent clinical strains of Mycobacterium tuberculosis, Immunobiology, 2008, vol. 213, pp. 567–575.PubMedCrossRefGoogle Scholar
  120. Ravikumar, M., Dheenadhayalan, V., Rajaram, K., et al., Associations of HLA-DRB1, DQB1 and DPB1 alleles with pulmonary tuberculosis in South India, Tuberc. Lung Dis., 1999, vol. 79, pp. 309–317.CrossRefGoogle Scholar
  121. Rojas, M., Olivier, M., Gros, P., et al., TNF-α and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macorphages, J. Immunol., 1999, vol. 162, pp. 6122–6131.PubMedGoogle Scholar
  122. Rook, G.A.W., The role of vitamin D in tuberculosis, Am. Rev. Respir. Dis., 1988, vol. 138, pp. 768–770.PubMedCrossRefGoogle Scholar
  123. Rozov, S.M. and Deineko, E.V., Mycobacterium tuberculosis: strategies of offense and defense, Biol. Bull. Rev., 2016, vol. 6, no. 4, pp. 276–288.CrossRefGoogle Scholar
  124. Saha, B., Das, G., Vohra, H., et al., Macrophage-T-cell interaction in experimental mycobacterial infection. Selective regulation of co-stimulatory molecules on Mycobacterium-infected macrophages and its implication in the suppression of cell-mediated immune response, Eur. J. Immunol., 1994, vol. 24, pp. 2618–2624.PubMedCrossRefGoogle Scholar
  125. Saunders, B.M., Frank, A.A., Orme, I.M., and Cooper, A.M., Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection, Infect. Immun., 2000, vol. 68, pp. 3322–3326.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Scanga, C.A., Mohan, V.P., Yu, K., et al., Depletion of CD4+ T-cells causes reactivation of murine persistent tuber culosis despite continued expression of IFN-γ and NOS2, J. Exp. Med., 2000, vol. 192, pp. 347–358.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Schindler, R., Mancilla, J., Endres, S., et al., Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF, Blood, 1990, vol. 75, pp. 40–47.PubMedGoogle Scholar
  128. Schlesinger, L.S., Bellinger-Kawahara, C.G., Payne, N.R., and Horwitz, M.A., Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3, J. Immunol., 1990, vol. 144, pp. 2771–2780.PubMedGoogle Scholar
  129. Schorey, J.S., Carroll, M.C., and Brown, E.J., A macrophage invasion mechanism of pathogenic mycobacteria, Science, 1997, vol. 277, pp. 1091–1093.PubMedCrossRefGoogle Scholar
  130. Scott-Browne, J.P., Shafiani, S., Tucker-Heard, G., et al., Expansion and function of Foxp3-expressing T-regulatory cells during tuberculosis, J. Exp. Med., 2007, vol. 204, pp. 2159–2169.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Seiler, P., Aichele, P., Raupach, B., et al., Rapid neutrophil response controls fast replicating intracellular bacteria but not slow-replicating Mycobacterium tuberculosis, J. Infect. Dis., 2000, vol. 181, pp. 671–680.PubMedCrossRefGoogle Scholar
  132. Senaldi, G., Yin, S., Shaklee, C.L., et al., Corynebacterium parvum and Mycobacterium bovis bacillus Calmette- Guerin-induced granuloma formation is inhibited in TNF receptor I (TNF-RI) knockout mice and by treatment with soluble TNF-RI, J. Immunol., 1996, vol. 157, pp. 5022–5026.PubMedGoogle Scholar
  133. Sharma, P.K., Saha, P.K., Singh, A., et al., FoxP3(+) regulatory T-cells suppress effector T-cell function at pathologic site in miliary tuberculosis, Am. J. Respir. Crit. Care Med., 2009, vol. 179, pp. 1061–1070.PubMedCrossRefGoogle Scholar
  134. Shiratsuchi, H., Johnson, J.L., and Ellner, J.J., Bidirectional effects of cytokines on the growth of Mycobacterium avium within human monocytes, J. Immunol., 1991, vol. 146, pp. 3165–3170.PubMedGoogle Scholar
  135. Sieling, P.A., Chatterjee, D., Porcelli, S.A., et al., CD1-restricted T-cell recognition of microbial lipoglycan antigens, Science, 1995, vol. 269, pp. 227–230.PubMedCrossRefGoogle Scholar
  136. Snider, D.E., Reorientation of tuberculosis control programs in the USA, Bull. Int. Union Tuberc., 1989, vol. 64, pp. 25–26.Google Scholar
  137. Soehnlein, O., Weber, C., and Lindbom, L., Neutrophil granule proteins tune monocytic cell function, Trends Immunol., 2009, vol. 30, pp. 538–546.PubMedCrossRefGoogle Scholar
  138. Sousa, A.O., Mazzaccaro, R.J., Russell, R.G., et al., Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 4204–4208.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Sousa, A.O., Salem, J.I., Lee, F.K., et al., An epidemic of tuberculosis with a high rate of tuberculin energy among a population previously unexposed to tuberculosis, the Yanomami Indians of the Brazilian Amazon, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 13227–13232.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Stead, W.W., Senner, J.W., Reddick, W.T., and Lofgren, J.P., Racial differences in susceptibility to infection by Mycobacterium tuberculosis, N. Engl. J. Med., 1990, vol. 322, pp. 422–427.PubMedCrossRefGoogle Scholar
  141. Sugawara, I., Yamada, H., Kaneko, H., et al., Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice, Infect. Immun., 1999, vol. 67, pp. 2585–2589.PubMedPubMedCentralGoogle Scholar
  142. Tascon, R.E., Protection against Mycobacterium tuberculosis infection by CD8+ T-cells requires production of gamma-interferon, Infect. Immun., 1998, vol. 66, pp. 830–834.PubMedPubMedCentralGoogle Scholar
  143. Thorley, A.J., Grandolfo, D., Lim, E., et al., Innate immune responses to bacterial ligands in the peripheral human lung-role of alveolar epithelial TLR expression and signaling, PLoS One, 2011, vol. 6, p. e21827.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Thurnher, M., Ramoner, R., Gastl, G., et al., Bacillus Calmette-Guerin mycobacteria stimulate human blood dendritic cells, Int. J. Cancer, 1997, vol. 70, pp. 128–134.PubMedCrossRefGoogle Scholar
  145. Toossi, Z. and Ellner, J.J. The role of TGF beta in the pathogenesis of human tuberculosis, Clin. Immunol. Immunopathol., 1998, vol. 87, pp. 107–114.PubMedCrossRefGoogle Scholar
  146. Toossi, Z., Gogate, P., Shiratsuchi, H., et al., Enhanced production of TGF-beta by blood monocytes from patients with active tuberculosis and presence of TGFbeta in tuberculosis granulomatous lung lesions, J. Immunol., 1995, vol. 154, pp. 465–473.PubMedGoogle Scholar
  147. Trinchieri, G., Regulatory role of T-cells producing both interferon gamma and interleukin 10 in persistent infection, J. Exp. Med., 2001, vol. 194, pp. 53–57.CrossRefGoogle Scholar
  148. Tsenova, L., Bergtold, A., Freedman, V.H., et al., Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 5657–5662.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Tsutsui, H., Nakanishi, K., Matsui, K., et al., IFN-gammainducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones, J. Immunol., 1996, vol. 157, no. 9, pp. 3967–3973.PubMedGoogle Scholar
  150. Vankayalapati, R., Garg, A., Porgador, A., et al., Role of natural killer cell activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium, J. Immunol., 2005, vol. 175, pp. 4611–4617.PubMedCrossRefGoogle Scholar
  151. Vankayalapati, R., Wizel, B., Weis, S.E., et al., The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium, J. Immunol., 2002, vol. 168, pp. 3451–3457.PubMedCrossRefGoogle Scholar
  152. Vascotto, F., Le Roux, D., Lankar, D., et al., Antigen presentation by B-lymphocytes: how receptor signaling directs membrane trafficking, Curr. Opin. Immunol., 2007, vol. 19, pp. 93–98.PubMedCrossRefGoogle Scholar
  153. Verreck, F.A., de Boer, T., Langenberg, D.M., et al., Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to mycobacteria, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 4560–4565.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wakeham, J., Wang, J., Magram, J., et al., Lack of both types 1 and 2 cytokines, tissue inflammatory responses, and immune protection during pulmonary infection by Mycobacterium bovis bacille Calmette-Guerin in IL-12-deficient mice, J. Immunol., 1998, vol. 160, pp. 6101–6111.PubMedGoogle Scholar
  155. Wang, J., Wakeham, J., Harkness, R., and Xing, Z., Macrophages are a significant source of type 1 cytokines during mycobacterial infection, J. Clin. Invest., 1999, vol. 103, pp. 1023–1029.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wickremasinghe, M.I., Thomas, L.H., and Friedland, J.S., Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa Bdependent network, J. Immunol., 1999, vol. 163, pp. 3936–3947.PubMedGoogle Scholar
  157. Wiker, H.G. and Harboe, M., The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis, Microbiol. Rev., 1992, vol. 56, pp. 648–661.PubMedPubMedCentralGoogle Scholar
  158. Wilkinson, R.J., Patel, P., Llewelyn, M., et al., Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1ß on tuberculosis, J. Exp. Med., 1999, vol. 189, pp. 1863–1874.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wolf, A.J., Desvignes, L., Linas, B., et al., Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs, J. Exp. Med., 2008, vol. 205, pp. 105–115.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Woodworth, S.M.J. and Behar, B.M., Mycobacterium tuberculosis-specific CD8+ T-cells and their role in immunity, Crit. Rev. Immunol., 2006, vol. 26, pp. 317–352.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Yamamoto, K., Ferrari, J.D., Cao, Y., et al., Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumonia, J. Immunol., 2012, vol. 189, pp. 2450–2459.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Yoneda, T. and Ellner, J.J., CD4+ T-cell and natural killer celldependent killing of Mycobacterium tuberculosis by human monocytes, Am. J. Respir. Crit. Care Med., 1998, vol. 158, pp. 395–403.PubMedCrossRefGoogle Scholar
  163. Yu, W., Soprana, E., Cosentino, G., et al., Soluble CD14 (1–152) confers responsiveness to both lipoarabinomannan and lipopolysaccharide in a novel HL-60 cell bioassay, J. Immunol., 1998, vol. 161, pp. 4244–4251.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations