Skip to main content
Log in

Mycobacterium tuberculosis: Strategies of offense and defense

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Strategies of macrophage attack by Mycobacterium tuberculosis and defense against immune response are considered in detail. The mechanisms of cell invasion, strategies of survival within phagosomes, methods for the suppression of antigen presentation, and pathways of M. tuberculosis transition into the persisting latent state are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anes, E., Kühnel, M.P., Bos, E., et al., Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria, Nat. Cell Biol., 2003, vol. 5, pp. 793–802.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, J.A. and Hart, P.D., Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes, J. Exp. Med., 1971, vol. 134, pp. 713–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong, J.A. and Hart, P.D.A., Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival, J. Exp. Med., 1975, vol. 142, pp. 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Bach, H., Papavinasasundaram, K.G., Wong, D., et al., Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B, Cell Host Microbe, 2008, vol. 3, pp. 316–322.

    Article  CAS  PubMed  Google Scholar 

  • Banta, L.M., Robinson, J.S., Klionsky, D.J., and Emr, S.D., Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting, J. Cell Biol., 1988, vol. 107, pp. 1369–1383.

    Article  CAS  PubMed  Google Scholar 

  • Banta, L.M., Vida, T.A., Herman, P.K., and Emr, S.D., Characterization of yeast Vps33p, a protein required for vacuolar protein sorting and vacuole biogenesis, Mol. Cell Biol., 1990, vol. 10, pp. 4638–4649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 2004, vol. 116, pp. 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Beatty, W.L., Rhoades, E.R., Ullrich, H.J., et al., Trafficking and release of mycobacterial lipids from infected macrophages, Traffic, 2000, vol. 1, pp. 235–247.

    Article  CAS  PubMed  Google Scholar 

  • Brightbill, H.D., Libraty, D.H., Krutzik, S. R., et al., Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors, Science, 1999, vol. 285, pp. 732–736.

    Article  CAS  PubMed  Google Scholar 

  • Briken, V. and Miller, J.L., Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis, Future Microbiol., 2008, vol. 3, pp. 415–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantalupo, G., Alifano, P., Roberti, V., et al., Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes, EMBO J., 2001, vol. 20, pp. 683–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, J. and Flynn, J., The immunological aspects of latency in tuberculosis, Clin. Immunol., 2004, vol. 110, pp. 2–12.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, D. and Khoo, K.H., Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects, Glycobiology, 1998, vol. 8, pp. 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P., Ruiz, R.E., Li, Q., et al., Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF, Infect. Immun., 2000, vol. 68, pp. 5575–5580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chroneos, Z. and Shepherd, V.L., Differential regulation of the mannose and Sp-A receptors on macrophages, Am. J. Physiol., 1995, vol. 269, pp. 721–726.

    Google Scholar 

  • Chu, R.S., Askew, D., Noss, E.H., et al., CpG oligodeoxynucleotides down-regulate macrophage class IIMHC antigen processing, J. Immunol., 1999, vol. 163, pp. 1188.

    CAS  PubMed  Google Scholar 

  • Clemens, D.L. and Horwitz, M.A., Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited, J. Exp. Med., 1995, vol. 181, pp. 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Cole, S.T., Brosch, R., Parkhill, J., et al., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, 1998, vol. 393, pp. 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Cosma, C.L., Sherman, D.R., and Ramakrishnan, L., The secret lives of the pathogenic mycobacteria, Ann. Rev. Microbiol., 2003, vol. 57, pp. 641–676.

    Article  CAS  Google Scholar 

  • Cowley, S.C., Babakaiff, R., and Av-Gay, Y., Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA, Res. Microbiol., 2002, vol. 153, pp. 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Cywes, C., Godenir, N.L., Hoppe, H.C., et al., Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in Chinese hamster ovary cells, Infect. Immun., 1996, vol. 64, pp. 5373–5383.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cywes C., Hoppe, H.C., Daffe, M., and Ehlers, M.R., Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent, Infect. Immun., 1997, vol. 65, pp. 4258–4266.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daffe, M. and Draper, P., The envelope layers of mycobacteria with reference to their pathogenicity, Adv. Microbiol. Physiol., 1998, vol. 39, pp. 131–203.

    Article  CAS  Google Scholar 

  • Darsow, T., Reider, S.E., and Emr, S.D., A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole, J. Cell Biol., 1997, vol. 138, pp. 517–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defacque, H., Bos, E., Garvalov, B., et al., Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes, Mol. Biol. Cell., 2002, vol. 13, pp. 1190–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeMaio, J., Zhang, Y., Ko, C., et al., A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 2790–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divangahi, M., Chen, M., Gan, H., et al., Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair, Nat. Immunol., 2009, vol. 10, pp. 899–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downing, J.F., Pasula, R., Wright, J.R., et al., Surfactant protein A promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 4848–4852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne, D.W., Resnick, D., Greenberg, J., et al., The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 1863–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellner, J.J. and Daniel, T.M., Immunosuppression by mycobacterial arabinomannan, Clin. Exp. Immunol., 1979, vol. 35, pp. 250–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst, J.D., Macrophage receptors for Mycobacterium tuberculosis, Infect. Immun., 1998, vol. 66, pp. 1277–1281.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esquela-Kerscher, A. and Slack, F.J., Oncomirs-microRNAs with a role in cancer, Nat. Rev. Cancer, 2006, vol. 6, pp. 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Ezekowitz, R.A., Sastry, K., Bailly, P., and Warner, A., Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells, J. Exp. Med., 1990, vol. 172, pp. 1785–1794.

    Article  CAS  PubMed  Google Scholar 

  • Flynn, J.L., Scanga, C.A., Tanaka, K.E., and Chan, J., Effects of aminoguanidine on latent murine tuberculosis, J. Immunol., 1998, vol. 160, pp. 1796–1803.

    CAS  PubMed  Google Scholar 

  • Forrellad, M.A., Klepp, L.I., Gioffre, A., et al., Virulence factors of the Mycobacterium tuberculosis complex, Virulence, 2013, vol. 4, pp. 3–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fratti, R.A., Backer, J.M., Gruenberg, J., et al., Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest, J. Cell Biol., 2001, vol. 154, pp. 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fratti, R.A., Chua, J., Vergne, I., and Deretic, V., Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 5437–5442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Y., Yi, Z., Wu, X., et al., Circulating microRNAs in patients with active pulmonary tuberculosis, J. Clin. Microbiol., 2011, vol. 49, pp. 4246–4251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita, M., Temporal and selective association of multiple sigma factors with RNA polymerase during sporulation in Bacillus subtilis, Genes Cells, 2000, vol. 5, pp. 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Gan, H., Lee, J., Ren, F., et al., Mycobacterium tuberculosis blocks cross linking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence, Nat. Immunol., 2008, vol. 9, pp. 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  • Gautam, U.S., Sikri, K., Vashist, A., et al., Essentiality of DevR/DosR interaction with SigA for the dormancy survival program in Mycobacterium tuberculosis, J. Bacteriol., 2014, vol. 196, pp. 790–799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghorpade, D.S., Leyland, R., Kurowska-Stolarska, M., et al., MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages, Mol. Cell Biol., 2012, vol. 32, pp. 2239–2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilleron, M., Himoudi, N., Adam, O., et al., Mycobacterium smegmatis phosphoinositolsglycer arabinomannans: structure and localization of alkali-labile and alkalistable phosphoinositides, J. Biol. Chem., 1997, vol. 272, pp. 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Glickman, M.S. and Jacobs, W.R., Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline, Cell, 2001, vol. 104, pp. 477–485.

    Article  CAS  PubMed  Google Scholar 

  • Global Tuberculosis Control: WHO Report 2010, Geneva, Switzerland: World Health Organization, 2010.

  • Gomez, J.E., Chen, J.M., and Bishai, W.R., Sigma factors of Mycobacterium tuberculosis, Tuber. Lung Dis., 1997, vol. 78, pp. 175–183.

    Article  CAS  PubMed  Google Scholar 

  • Guerin, I. and de Chastellier, C., Disruption of the actin filament network affects delivery of endocytic contents marker to phagosomes with early endosome characteristics: the case of phagosomes with pathogenic mycobacteria, Eur. J. Cell Biol., 2000, vol. 79, pp. 735–749.

    Article  CAS  PubMed  Google Scholar 

  • Hackam, D.J., Rotstein, O.D., Zhang, W.J., et al., Regulation of phagosomal acidification. Differential targeting of Na/H exchangers, Na?/K?-ATPases, and vacuolar type H-ATPases, J. Biol. Chem., 1997, vol. 272, pp. 29810–29820.

    Article  CAS  PubMed  Google Scholar 

  • Hestvik, A.L., Hmama, Z., and Av-Gay, Y., Kinome analysis of host response to mycobacterial infection: a novel technique in proteomics, Infect. Immun., 2003, vol. 71, pp. 5514–5522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hestvik, A.L., Hmama, Z., and Av-Gay, Y., Mycobacterial manipulation of the host cell, FEMS Microbiol. Rev., 2005, vol. 29, pp. 1041–1050.

    Article  CAS  PubMed  Google Scholar 

  • Hoflack, B. and Kornfeld, S., Lysosomal enzyme binding to mouse P388D1 macrophage membranes lacking the 215-kDa mannose 6-phosphate receptor: evidence for the existence of a second mannose 6-phosphate receptor, Proc. Natl. Acad. Sci. U.S.A., 1985, vol. 82, pp. 4428–4432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honer, Z.U., Bentrup, K., and Russell, D.G., Mycobacterial persistence: adaptation to a changing environment, Trends Microbiol., 2001, vol. 9, pp. 597–605.

    Article  Google Scholar 

  • Houben, E.N., Nguyen, L., and Pieters, J., Interaction of pathogenic mycobacteria with the host immune system, Curr. Opin. Microbiol., 2006, vol. 9, pp. 76–85.

    Article  CAS  PubMed  Google Scholar 

  • Huizing, M., Didier, A., Walenta, J., et al., Molecular cloning and characterization of human VPS18, VPS 11, VPS16, and VPS33, Gene, 2001, vol. 264, pp. 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Jahraus, A., Egeberg, M., Hinner, B., et al., ATP-dependent membrane assembly of F-actin facilitates membrane fusion, Mol. Biol. Cell, 2001, vol. 12, pp. 155–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Q., Wang, Y., Hao, Y., et al., miR2 Disease: a manually curated database for microRNA deregulation in human disease, Nucleic Acids Res., 2009, vol. 37, pp. 98–104.

    Article  CAS  Google Scholar 

  • Kang, P.B., Azad, A.K., Torrelles, J.B., et al., The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis, J. Exp. Med., 2005, vol. 202, pp. 987–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann, S.H., Tuberculosis: back on the immunologists’ agenda, Immunity, 2006, vol. 24, pp. 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Keane, J., Balcewicz-Sablinska, M.K., Remold, H.G., et al., Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis, Infect. Immun., 1997, vol. 65, pp. 298–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keane, J., Remold, H.G., and Kornfeld, H., Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages, J. Immunol., 2000, vol. 164, pp. 2016–2020.

    Article  CAS  PubMed  Google Scholar 

  • Kim, N.V. and Jin-Wu, N., Genomics of microRNA, Trends Genet., 2006, vol. 22, pp. 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Kjeken, R., Egeberg, M., Habermann, A., et al., Fusion between phagosomes, early and late endosomes: a role for actin in fusion between late, but not early endocytic organelles, Mol. Biol. Cell, 2004, vol. 15, pp. 345–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, A., The global tuberculosis situation and the new control strategy of the World Health Organization, Bull. World Health Org., 2001, vol. 79, pp. 71–75.

    Google Scholar 

  • Krauss, J.C., Poo, H.X., Mayo-Bond, L., et al., Reconstitution of antibody-dependent phagocytosis in fibroblasts expressing Fc gamma receptor IIIB and the complement receptor type 3, J. Immunol., 1994, vol. 153, pp. 1769–1777.

    CAS  PubMed  Google Scholar 

  • Krieger, M., Acton, S., Ashkenas, J., et al., Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors, J. Biol. Chem., 1993, vol. 268, pp. 4569–4572.

    CAS  PubMed  Google Scholar 

  • Kumar, A., Lewin, A., Rani, P.S., et al., Dormancy associated translation inhibitor (DATIN/Rv0079) of Mycobacterium tuberculosis interacts with TLR2 and induces proinflammatory cytokine expression, Cytokine, 2013, vol. 64, pp. 258–264.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R., Halder, P., Sahu, S.K., et al., Identification of a novel role of ESAT-6-dependent miR-155 induction during infection of macrophages with Mycobacterium tuberculosis, Cell Microbiol., 2012, vol. 14, pp. 1620–1631.

    Article  CAS  PubMed  Google Scholar 

  • Lamkanfi, M. and Dixit, V.M., Manipulation of host cell death pathways during microbial infections, Cell Host Microbe, 2010, vol. 8, pp. 44–54.

    Article  CAS  PubMed  Google Scholar 

  • Landmann, S., Muhlethaler-Mottet, A., Bernasconi, L., et al., Maturation of dendritic cells is accompanied by rapid transcriptional silencing of class IItransactivator (CIITA) expression, J. Exp. Med., 2001, vol. 194, pp. 379–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Hartman, M., and Kornfeld, H., Macrophage apoptosis in tuberculosis, Yonsei Med. J., 2009, vol. 50, pp. 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemmon, M.A., Phosphoinositide recognition domains, Traffic, 2003, vol. 4, pp. 201–213.

    Article  CAS  PubMed  Google Scholar 

  • Lukacs, N.W., Chensue, S.W., Strieter, R.M., et al., Inflammatory granuloma formation is mediated by TNF-alphainducible intercellular adhesion molecule-1, J. Immunol., 1994, vol. 152, pp. 5883–5889.

    CAS  PubMed  Google Scholar 

  • Ma, F., Xu, S., Liu, X., et al., The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon γ, Nat. Immunol., 2011, vol. 12, pp. 861–869.

    Article  CAS  PubMed  Google Scholar 

  • Magombedze, G., Dowdy, D., and Mulder, N., Latent tuberculosis: models, computational efforts and the pathogen’s regulatory mechanisms during dormancy, Front. Bioeng. Biotech., 2013, vol. 1.doi 10.3389/fbioe.2013.00004

  • Malik, Z.A., Denning, G.M., and Kusner, D.J., Inhibition of Ca2 signaling by Mycobacterium tuberculosis is associated with reduced phagosomeelysosome fusion and increased survival within human macrophages, J. Exp. Med., 2000, vol. 191, pp. 287–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride, H.M., Rybin, V., Murphy, C., et al., Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13, Cell, 1999, vol. 98, pp. 377–386.

    Article  CAS  PubMed  Google Scholar 

  • McKinney, J.D., Honer zu Bentrup, B.G., Munoz-Elias, E.J., et al., Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase, Nature, 2000, vol. 406, pp. 735–738.

    Article  CAS  PubMed  Google Scholar 

  • Minnikin, D.E., Lipids: complex lipids, their chemistry, biosynthesis and roles, in The Biology of Mycobacteria, Ratledge, C. and Stanford, J., Eds., London: Academic, 1982, pp. 95–184.

    Google Scholar 

  • Mohan, V.P., Scanga, C.A., Yu, K., et al., Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology, Infect. Immun., 2001, vol. 69, pp. 1847–1855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno, C., Mehlert, A., and Lamb, J., The inhibitory effects of mycobacterial lipoarabinomannan and polysaccharides upon polyclonal and monoclonal human T cell proliferation, Clin. Exp. Immunol., 1988, vol. 74, pp. 206–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, L. and Pieters, J., The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages, Trends Cell Biol., 2005, vol. 15, pp. 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Noss, E.H., Pai, R.K., Sellati, T.J., et al., Toll-like receptor 2-dependent inhibition of macrophage class IIMHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis, J. Immunol., 2001, vol. 167, pp. 910–918.

    Article  CAS  PubMed  Google Scholar 

  • Pai, R.K., Pennini, M.E., Tobian, A.A., et al., Prolonged toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages, Infect. Immun., 2004, vol. 72, pp. 6603–6614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, H.D., Guinn, K.M., Harrell, M.I., et al., Rv3133c/DosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis, Mol. Microbiol., 2003, vol. 48, pp. 833–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasula, R., Downing, J.F., Wright, J.R., et al., Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages, Am. J. Respir. Cell. Mol. Biol., 1997, vol. 17, pp. 209–217.

    Article  CAS  PubMed  Google Scholar 

  • Pennini, M.E., Pai, R.K., Schultz, D.C., et al., Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFNgamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling, J. Immunol., 2006, vol. 176, pp. 4323–4330.

    Article  CAS  PubMed  Google Scholar 

  • Pinxteren van, L.A., Cassidy, J.P., Smedegaard, B.H., et al., Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells, Eur. J. Immunol., 2000, vol. 30, pp. 3689–3698.

    Article  Google Scholar 

  • Price, A., Wickner, W., and Ungermann, C., Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion, J. Cell Biol., 2000, vol. 148, pp. 1223–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prigozy, T.I., Sieling, P.A., Clemens, D., et al., The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules, Immunity, 1997, vol. 6, pp. 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Primm, T.P., Andersen, S.J., Mizrahi, V., et al., The stringent response of Mycobacterium tuberculosis is required for long-term survival, J. Bacteriol., 2000, vol. 182, pp. 4889–4898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prozorov, A.A. and Danilenko, V.N., Mycobacteria of the tuberculosis complex: genomics, molecular epidemiology, and evolution trends, Biol. Bull. Rev., 2011, vol. 1, no. 6, pp. 483–495.

    Article  Google Scholar 

  • Prozorov, A.A., Fedorova, I.A., Bekker, O.B., and Danilenko, V.N., The virulence factors of Mycobacterium tuberculosis: genetic control, new conceptions, Russ. J. Genet., 2014, vol. 50, no. 8, pp. 775–797.

    Article  CAS  Google Scholar 

  • Pugin, J., Heumann, I.D., Tomasz, A., et al., CD14 is a pattern recognition receptor, Immunity, 1994, vol. 1, pp. 509–516.

    Article  CAS  PubMed  Google Scholar 

  • Rajaram, M.V., Ni, B., Morris, J.D., et al., Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 17408–17413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan, L., Federspiel, N.A., and Falkow, S., Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family, Science, 2000, vol. 288, pp. 1436–1439.

    Article  CAS  PubMed  Google Scholar 

  • Rindi, L., Lari, N., and Garzelli, C., Search for genes potentially involved in Mycobacterium tuberculosis virulence by mRNA differential display, Biochem. Biophys. Res. Commun., 1999, vol. 258, pp. 94–101.

    Article  CAS  PubMed  Google Scholar 

  • Roach, D.R., Briscoe, H., Saunders, B., et al., Secreted lymphotoxin-a is essential for the control of an intracellular bacterial infection, J. Exp. Med., 2001, vol. 193, pp. 239–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, D.G., Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol., 2007, vol. 5, pp. 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Russell, D.G., Mycobacterium and seduction of the macrophage, in Mycobacteria: Molecular Biology and Virulence, Ratledge, C. and Dale, J.W., Eds., New York: Wiley, 2009, pp. 371–388.

    Google Scholar 

  • Russell, D.G., Mycobacterium tuberculosis and the intimate discourse of a chronic infection, Immunol. Rev., 2011, vol. 240, pp. 252–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh, M.T. and Belisle, J.T., Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases, J. Bacteriol., 2000, vol. 182, pp. 6850–6853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, T.K., Rehling, P., Peterson, M.R., et al., Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion, Mol. Cell, 2000, vol. 6, pp. 661–671.

    Article  CAS  PubMed  Google Scholar 

  • Scanga, C.A., Mohan, V.P., Yu, K., et al., Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2, J. Exp. Med., 2000, vol. 192, pp. 347–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesinger, L.S., Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors, J. Immunol., 1993, vol. 150, pp. 2920–2930.

    CAS  PubMed  Google Scholar 

  • Schlesinger, L.S., Bellinger-Kawahara, C.G., Payne, N.R., and Horwitz, M.A., Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3, J. Immunol., 1990, vol. 144, pp. 2771–2780.

    CAS  PubMed  Google Scholar 

  • Schlesinger, L.S., Hull, S.R., and Kaufman, T.M., Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages, J. Immunol., 1994, vol. 152, pp. 4070–4079.

    CAS  PubMed  Google Scholar 

  • Schlesinger, L.S., Kaufman, T.M., Iyer, S., et al., Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages, J. Immunol., 1996, vol. 157, pp. 4568–4575.

    CAS  PubMed  Google Scholar 

  • Schorey, J.S., Carroll, M.C., and Brown, E.J., A macrophage invasion mechanism of pathogenic mycobacteria, Science, 1997, vol. 277, pp. 1091–1093.

    Article  CAS  PubMed  Google Scholar 

  • Seals, D.F., Eitzen, G., Margolis, N., et al., A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 9402–9407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbach, M., Schwanhausser, B., Thierfelder, N., et al., Widespread changes in protein synthesis induced by microRNAs, Nature, 2008, vol. 455, pp. 58–63.

    Article  CAS  PubMed  Google Scholar 

  • Seto, S., Tsujimura, K., and Koide, Y., Rab GTPases regulating phagosome maturation are differentially recruited to mycobacterial phagosomes, Traffic, 2011, vol. 12, pp. 407–420.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh, M.U. and Nathan, C.F., Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria, Curr. Opin. Microbiol., 2000, vol. 3, pp. 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Sibley, L.D., Hunter, S.W., Brennan, P.J., and Krahenbuhl, J.L., Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages, Infect. Immun., 1988, vol. 56, pp. 1232–1236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonsen, A., Gaullier, J.M., D’Arrigo, A., and Stenmark, H., The Rab5 effector EEA1 interacts directly with syntaxin-6, J. Biol. Chem., 1999, vol. 274, pp. 28857–28860.

    Article  CAS  PubMed  Google Scholar 

  • Singh, P.P., LeMaire, C., Tan, J.C., et al., Exosomes released from M. tuberculosis infected cells can suppress IFN-g mediated activation of native macrophages, PLoS One, 2011, vol. 6, p. e18564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroupe, C., Collins, K.M., Fratti, R.A., and Wickner, W., Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p, EMBO J., 2006, vol. 25, pp. 1579–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgill-Koszycki, S., Schaible, U.E., and Russell, D.G., Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis, EMBO J., 1996, vol. 15, pp. 6960–6968.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgill-Koszycki, S., Schlesinger, P.H., Chakraborty, P., et al., Lack of acidification in mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase, Science, 1994, vol. 263, pp. 678–681.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Deghmane, A.E., Soualhine, H., et al., Mycobacterium bovis BCG disrupts the interaction of Rab7 with RILP contributing to inhibition of phagosome maturation, J. Leukocyte Biol., 2007, vol. 82, pp. 1437–1445.

    Article  CAS  PubMed  Google Scholar 

  • Sun-Wada, G.H., Tabata, H., Kawamura, N., et al., Direct recruitment of H-ATPase from lysosomes for phagosomal acidification, J. Cell Sci., 2009, vol. 122, pp. 2504–2513.

    Article  CAS  PubMed  Google Scholar 

  • Sutterwala, F.S., Rosenthal, L.A., and Mosser, D.M., Cooperation between CR1 (CD35) and CR3 (CD 11b/CD18) in the binding of complement-opsonized particles, J. Leukocyte Biol., 1996, vol. 59, pp. 883–890.

    CAS  PubMed  Google Scholar 

  • Taylor, M.E. and Drickamer, K., Structural requirements for high affinity binding of complex ligands by the macrophage mannose receptor, J. Biol. Chem., 1993, vol. 268, pp. 399–404.

    CAS  PubMed  Google Scholar 

  • Tenner, A.J., Robinson, S. L., Borchelt, J., and Wright, J.R., Human pulmonary surfactant protein (Sp-A), a protein structurally homologous to C1q, can enhance FcRand CR1-mediated phagoctosis, J. Biol. Chem., 1989, vol. 264, pp. 13923–13928.

    CAS  PubMed  Google Scholar 

  • Vergne, I., Chua, J., Lee, H.H., et al., Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 4033–4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergne, I., Chua, J., Singh, S.B., and Deretic, V., Cell biology of Mycobacterium tuberculosis phagosome, Ann. Rev. Cell Dev. Biol., 2004, vol. 20, pp. 367–394.

    Article  CAS  Google Scholar 

  • Vida, T. and Gerhardt, B., A cell-free assay allows reconstitution of Vps33p-dependent transport to the yeast vacuole/lysosome, J. Cell Biol., 1999, vol. 146, pp. 85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne, L.G., Dormancy of Mycobacterium tuberculosis and latency of disease, Eur. J. Clin. Microbiol. Infect. Dis., 1994, vol. 13, pp. 908–914.

    Article  CAS  PubMed  Google Scholar 

  • Weber, I., Fritz, C., Ruttkowski, S., et al., Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice, Mol. Microbiol., 2000, vol. 35, pp. 1017–1025.

    Article  CAS  PubMed  Google Scholar 

  • Weikert, L.F., Edwards, K., Chroneos, Z.C., et al., Sp-A enhances uptake of bacillus Calmette-Guerin by macrophages through a specific Sp-A receptor, Am. J. Physiol., 1997, vol. 272, pp. 989–995.

    Google Scholar 

  • Wong, D., Bach, H., Hmama, Z., and Av-Gay, Y., Mycobacterium tuberculosis protein tyrosine phosphatase A disrupts phagosome acidification by exclusion of host vacuolar-H-ATPase, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 19371–19376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization, Geneva, Switzerland, 2002.

  • Xu, S., Cooper, A., Sturgill-Koszycki, S., et al., Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages, J. Immunol., 1994, vol. 153, pp. 2568–2578.

    CAS  PubMed  Google Scholar 

  • Young, D.B. and Garbe, T., Lipoprotein antigens of M. tuberculosis, Res. Microbiol., 1991, vol. 142, pp. 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Persistent and dormant tubercle bacilli and latent tuberculosis, Front. Biosci., 2004, vol. 9, pp. 1136–1156.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli, S., Edwards, S., and Ernst, J.D., Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages, Am. J. Respir. Cell. Mol. Biol., 1996, vol. 15, pp. 760–770.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Rozov.

Additional information

Original Russian Text © S.M. Rozov, E.V. Deineko, 2016, published in Uspekhi Sovremennoi Biologii, 2016, Vol. 136, No. 1, pp. 25–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozov, S.M., Deineko, E.V. Mycobacterium tuberculosis: Strategies of offense and defense. Biol Bull Rev 6, 276–288 (2016). https://doi.org/10.1134/S2079086416040058

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086416040058

Keywords

Navigation