Biology Bulletin Reviews

, Volume 6, Issue 4, pp 276–288 | Cite as

Mycobacterium tuberculosis: Strategies of offense and defense

Article

Abstract

Strategies of macrophage attack by Mycobacterium tuberculosis and defense against immune response are considered in detail. The mechanisms of cell invasion, strategies of survival within phagosomes, methods for the suppression of antigen presentation, and pathways of M. tuberculosis transition into the persisting latent state are discussed.

Keywords

intracellular pathogens macrophages phagocytosis interaction with receptors phagosome maturation persistence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anes, E., Kühnel, M.P., Bos, E., et al., Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria, Nat. Cell Biol., 2003, vol. 5, pp. 793–802.PubMedCrossRefGoogle Scholar
  2. Armstrong, J.A. and Hart, P.D., Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes, J. Exp. Med., 1971, vol. 134, pp. 713–740.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Armstrong, J.A. and Hart, P.D.A., Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival, J. Exp. Med., 1975, vol. 142, pp. 1–16.PubMedCrossRefGoogle Scholar
  4. Bach, H., Papavinasasundaram, K.G., Wong, D., et al., Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B, Cell Host Microbe, 2008, vol. 3, pp. 316–322.PubMedCrossRefGoogle Scholar
  5. Banta, L.M., Robinson, J.S., Klionsky, D.J., and Emr, S.D., Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting, J. Cell Biol., 1988, vol. 107, pp. 1369–1383.PubMedCrossRefGoogle Scholar
  6. Banta, L.M., Vida, T.A., Herman, P.K., and Emr, S.D., Characterization of yeast Vps33p, a protein required for vacuolar protein sorting and vacuole biogenesis, Mol. Cell Biol., 1990, vol. 10, pp. 4638–4649.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 2004, vol. 116, pp. 281–297.PubMedCrossRefGoogle Scholar
  8. Beatty, W.L., Rhoades, E.R., Ullrich, H.J., et al., Trafficking and release of mycobacterial lipids from infected macrophages, Traffic, 2000, vol. 1, pp. 235–247.PubMedCrossRefGoogle Scholar
  9. Brightbill, H.D., Libraty, D.H., Krutzik, S. R., et al., Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors, Science, 1999, vol. 285, pp. 732–736.PubMedCrossRefGoogle Scholar
  10. Briken, V. and Miller, J.L., Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis, Future Microbiol., 2008, vol. 3, pp. 415–422.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cantalupo, G., Alifano, P., Roberti, V., et al., Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes, EMBO J., 2001, vol. 20, pp. 683–693.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chan, J. and Flynn, J., The immunological aspects of latency in tuberculosis, Clin. Immunol., 2004, vol. 110, pp. 2–12.PubMedCrossRefGoogle Scholar
  13. Chatterjee, D. and Khoo, K.H., Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects, Glycobiology, 1998, vol. 8, pp. 113–120.PubMedCrossRefGoogle Scholar
  14. Chen, P., Ruiz, R.E., Li, Q., et al., Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF, Infect. Immun., 2000, vol. 68, pp. 5575–5580.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chroneos, Z. and Shepherd, V.L., Differential regulation of the mannose and Sp-A receptors on macrophages, Am. J. Physiol., 1995, vol. 269, pp. 721–726.Google Scholar
  16. Chu, R.S., Askew, D., Noss, E.H., et al., CpG oligodeoxynucleotides down-regulate macrophage class IIMHC antigen processing, J. Immunol., 1999, vol. 163, pp. 1188.PubMedGoogle Scholar
  17. Clemens, D.L. and Horwitz, M.A., Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited, J. Exp. Med., 1995, vol. 181, pp. 257–270.PubMedCrossRefGoogle Scholar
  18. Cole, S.T., Brosch, R., Parkhill, J., et al., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, 1998, vol. 393, pp. 537–544.PubMedCrossRefGoogle Scholar
  19. Cosma, C.L., Sherman, D.R., and Ramakrishnan, L., The secret lives of the pathogenic mycobacteria, Ann. Rev. Microbiol., 2003, vol. 57, pp. 641–676.CrossRefGoogle Scholar
  20. Cowley, S.C., Babakaiff, R., and Av-Gay, Y., Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA, Res. Microbiol., 2002, vol. 153, pp. 233–241.PubMedCrossRefGoogle Scholar
  21. Cywes, C., Godenir, N.L., Hoppe, H.C., et al., Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in Chinese hamster ovary cells, Infect. Immun., 1996, vol. 64, pp. 5373–5383.PubMedPubMedCentralGoogle Scholar
  22. Cywes C., Hoppe, H.C., Daffe, M., and Ehlers, M.R., Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent, Infect. Immun., 1997, vol. 65, pp. 4258–4266.PubMedPubMedCentralGoogle Scholar
  23. Daffe, M. and Draper, P., The envelope layers of mycobacteria with reference to their pathogenicity, Adv. Microbiol. Physiol., 1998, vol. 39, pp. 131–203.CrossRefGoogle Scholar
  24. Darsow, T., Reider, S.E., and Emr, S.D., A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole, J. Cell Biol., 1997, vol. 138, pp. 517–529.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Defacque, H., Bos, E., Garvalov, B., et al., Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes, Mol. Biol. Cell., 2002, vol. 13, pp. 1190–1202.PubMedPubMedCentralCrossRefGoogle Scholar
  26. DeMaio, J., Zhang, Y., Ko, C., et al., A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 2790–2794.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Divangahi, M., Chen, M., Gan, H., et al., Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair, Nat. Immunol., 2009, vol. 10, pp. 899–906.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Downing, J.F., Pasula, R., Wright, J.R., et al., Surfactant protein A promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 4848–4852.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dunne, D.W., Resnick, D., Greenberg, J., et al., The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 1863–1867.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ellner, J.J. and Daniel, T.M., Immunosuppression by mycobacterial arabinomannan, Clin. Exp. Immunol., 1979, vol. 35, pp. 250–257.PubMedPubMedCentralGoogle Scholar
  31. Ernst, J.D., Macrophage receptors for Mycobacterium tuberculosis, Infect. Immun., 1998, vol. 66, pp. 1277–1281.PubMedPubMedCentralGoogle Scholar
  32. Esquela-Kerscher, A. and Slack, F.J., Oncomirs-microRNAs with a role in cancer, Nat. Rev. Cancer, 2006, vol. 6, pp. 259–269.PubMedCrossRefGoogle Scholar
  33. Ezekowitz, R.A., Sastry, K., Bailly, P., and Warner, A., Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells, J. Exp. Med., 1990, vol. 172, pp. 1785–1794.PubMedCrossRefGoogle Scholar
  34. Flynn, J.L., Scanga, C.A., Tanaka, K.E., and Chan, J., Effects of aminoguanidine on latent murine tuberculosis, J. Immunol., 1998, vol. 160, pp. 1796–1803.PubMedGoogle Scholar
  35. Forrellad, M.A., Klepp, L.I., Gioffre, A., et al., Virulence factors of the Mycobacterium tuberculosis complex, Virulence, 2013, vol. 4, pp. 3–66.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fratti, R.A., Backer, J.M., Gruenberg, J., et al., Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest, J. Cell Biol., 2001, vol. 154, pp. 631–644.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fratti, R.A., Chua, J., Vergne, I., and Deretic, V., Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 5437–5442.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fu, Y., Yi, Z., Wu, X., et al., Circulating microRNAs in patients with active pulmonary tuberculosis, J. Clin. Microbiol., 2011, vol. 49, pp. 4246–4251.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fujita, M., Temporal and selective association of multiple sigma factors with RNA polymerase during sporulation in Bacillus subtilis, Genes Cells, 2000, vol. 5, pp. 79–88.PubMedCrossRefGoogle Scholar
  40. Gan, H., Lee, J., Ren, F., et al., Mycobacterium tuberculosis blocks cross linking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence, Nat. Immunol., 2008, vol. 9, pp. 1189–1197.PubMedCrossRefGoogle Scholar
  41. Gautam, U.S., Sikri, K., Vashist, A., et al., Essentiality of DevR/DosR interaction with SigA for the dormancy survival program in Mycobacterium tuberculosis, J. Bacteriol., 2014, vol. 196, pp. 790–799.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ghorpade, D.S., Leyland, R., Kurowska-Stolarska, M., et al., MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages, Mol. Cell Biol., 2012, vol. 32, pp. 2239–2253.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gilleron, M., Himoudi, N., Adam, O., et al., Mycobacterium smegmatis phosphoinositolsglycer arabinomannans: structure and localization of alkali-labile and alkalistable phosphoinositides, J. Biol. Chem., 1997, vol. 272, pp. 117–124.PubMedCrossRefGoogle Scholar
  44. Glickman, M.S. and Jacobs, W.R., Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline, Cell, 2001, vol. 104, pp. 477–485.PubMedCrossRefGoogle Scholar
  45. Global Tuberculosis Control: WHO Report 2010, Geneva, Switzerland: World Health Organization, 2010.Google Scholar
  46. Gomez, J.E., Chen, J.M., and Bishai, W.R., Sigma factors of Mycobacterium tuberculosis, Tuber. Lung Dis., 1997, vol. 78, pp. 175–183.PubMedCrossRefGoogle Scholar
  47. Guerin, I. and de Chastellier, C., Disruption of the actin filament network affects delivery of endocytic contents marker to phagosomes with early endosome characteristics: the case of phagosomes with pathogenic mycobacteria, Eur. J. Cell Biol., 2000, vol. 79, pp. 735–749.PubMedCrossRefGoogle Scholar
  48. Hackam, D.J., Rotstein, O.D., Zhang, W.J., et al., Regulation of phagosomal acidification. Differential targeting of Na/H exchangers, Na?/K?-ATPases, and vacuolar type H-ATPases, J. Biol. Chem., 1997, vol. 272, pp. 29810–29820.PubMedCrossRefGoogle Scholar
  49. Hestvik, A.L., Hmama, Z., and Av-Gay, Y., Kinome analysis of host response to mycobacterial infection: a novel technique in proteomics, Infect. Immun., 2003, vol. 71, pp. 5514–5522.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hestvik, A.L., Hmama, Z., and Av-Gay, Y., Mycobacterial manipulation of the host cell, FEMS Microbiol. Rev., 2005, vol. 29, pp. 1041–1050.PubMedCrossRefGoogle Scholar
  51. Hoflack, B. and Kornfeld, S., Lysosomal enzyme binding to mouse P388D1 macrophage membranes lacking the 215-kDa mannose 6-phosphate receptor: evidence for the existence of a second mannose 6-phosphate receptor, Proc. Natl. Acad. Sci. U.S.A., 1985, vol. 82, pp. 4428–4432.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Honer, Z.U., Bentrup, K., and Russell, D.G., Mycobacterial persistence: adaptation to a changing environment, Trends Microbiol., 2001, vol. 9, pp. 597–605.CrossRefGoogle Scholar
  53. Houben, E.N., Nguyen, L., and Pieters, J., Interaction of pathogenic mycobacteria with the host immune system, Curr. Opin. Microbiol., 2006, vol. 9, pp. 76–85.PubMedCrossRefGoogle Scholar
  54. Huizing, M., Didier, A., Walenta, J., et al., Molecular cloning and characterization of human VPS18, VPS 11, VPS16, and VPS33, Gene, 2001, vol. 264, pp. 241–247.PubMedCrossRefGoogle Scholar
  55. Jahraus, A., Egeberg, M., Hinner, B., et al., ATP-dependent membrane assembly of F-actin facilitates membrane fusion, Mol. Biol. Cell, 2001, vol. 12, pp. 155–170.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jiang, Q., Wang, Y., Hao, Y., et al., miR2 Disease: a manually curated database for microRNA deregulation in human disease, Nucleic Acids Res., 2009, vol. 37, pp. 98–104.CrossRefGoogle Scholar
  57. Kang, P.B., Azad, A.K., Torrelles, J.B., et al., The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis, J. Exp. Med., 2005, vol. 202, pp. 987–999.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kaufmann, S.H., Tuberculosis: back on the immunologists’ agenda, Immunity, 2006, vol. 24, pp. 351–357.PubMedCrossRefGoogle Scholar
  59. Keane, J., Balcewicz-Sablinska, M.K., Remold, H.G., et al., Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis, Infect. Immun., 1997, vol. 65, pp. 298–304.PubMedPubMedCentralGoogle Scholar
  60. Keane, J., Remold, H.G., and Kornfeld, H., Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages, J. Immunol., 2000, vol. 164, pp. 2016–2020.PubMedCrossRefGoogle Scholar
  61. Kim, N.V. and Jin-Wu, N., Genomics of microRNA, Trends Genet., 2006, vol. 22, pp. 165–173.PubMedCrossRefGoogle Scholar
  62. Kjeken, R., Egeberg, M., Habermann, A., et al., Fusion between phagosomes, early and late endosomes: a role for actin in fusion between late, but not early endocytic organelles, Mol. Biol. Cell, 2004, vol. 15, pp. 345–358.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Koch, A., The global tuberculosis situation and the new control strategy of the World Health Organization, Bull. World Health Org., 2001, vol. 79, pp. 71–75.Google Scholar
  64. Krauss, J.C., Poo, H.X., Mayo-Bond, L., et al., Reconstitution of antibody-dependent phagocytosis in fibroblasts expressing Fc gamma receptor IIIB and the complement receptor type 3, J. Immunol., 1994, vol. 153, pp. 1769–1777.PubMedGoogle Scholar
  65. Krieger, M., Acton, S., Ashkenas, J., et al., Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors, J. Biol. Chem., 1993, vol. 268, pp. 4569–4572.PubMedGoogle Scholar
  66. Kumar, A., Lewin, A., Rani, P.S., et al., Dormancy associated translation inhibitor (DATIN/Rv0079) of Mycobacterium tuberculosis interacts with TLR2 and induces proinflammatory cytokine expression, Cytokine, 2013, vol. 64, pp. 258–264.PubMedCrossRefGoogle Scholar
  67. Kumar, R., Halder, P., Sahu, S.K., et al., Identification of a novel role of ESAT-6-dependent miR-155 induction during infection of macrophages with Mycobacterium tuberculosis, Cell Microbiol., 2012, vol. 14, pp. 1620–1631.PubMedCrossRefGoogle Scholar
  68. Lamkanfi, M. and Dixit, V.M., Manipulation of host cell death pathways during microbial infections, Cell Host Microbe, 2010, vol. 8, pp. 44–54.PubMedCrossRefGoogle Scholar
  69. Landmann, S., Muhlethaler-Mottet, A., Bernasconi, L., et al., Maturation of dendritic cells is accompanied by rapid transcriptional silencing of class IItransactivator (CIITA) expression, J. Exp. Med., 2001, vol. 194, pp. 379–392.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lee, J., Hartman, M., and Kornfeld, H., Macrophage apoptosis in tuberculosis, Yonsei Med. J., 2009, vol. 50, pp. 1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lemmon, M.A., Phosphoinositide recognition domains, Traffic, 2003, vol. 4, pp. 201–213.PubMedCrossRefGoogle Scholar
  72. Lukacs, N.W., Chensue, S.W., Strieter, R.M., et al., Inflammatory granuloma formation is mediated by TNF-alphainducible intercellular adhesion molecule-1, J. Immunol., 1994, vol. 152, pp. 5883–5889.PubMedGoogle Scholar
  73. Ma, F., Xu, S., Liu, X., et al., The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon γ, Nat. Immunol., 2011, vol. 12, pp. 861–869.PubMedCrossRefGoogle Scholar
  74. Magombedze, G., Dowdy, D., and Mulder, N., Latent tuberculosis: models, computational efforts and the pathogen’s regulatory mechanisms during dormancy, Front. Bioeng. Biotech., 2013, vol. 1.doi 10.3389/fbioe.2013.00004Google Scholar
  75. Malik, Z.A., Denning, G.M., and Kusner, D.J., Inhibition of Ca2 signaling by Mycobacterium tuberculosis is associated with reduced phagosomeelysosome fusion and increased survival within human macrophages, J. Exp. Med., 2000, vol. 191, pp. 287–302.PubMedPubMedCentralCrossRefGoogle Scholar
  76. McBride, H.M., Rybin, V., Murphy, C., et al., Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13, Cell, 1999, vol. 98, pp. 377–386.PubMedCrossRefGoogle Scholar
  77. McKinney, J.D., Honer zu Bentrup, B.G., Munoz-Elias, E.J., et al., Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase, Nature, 2000, vol. 406, pp. 735–738.PubMedCrossRefGoogle Scholar
  78. Minnikin, D.E., Lipids: complex lipids, their chemistry, biosynthesis and roles, in The Biology of Mycobacteria, Ratledge, C. and Stanford, J., Eds., London: Academic, 1982, pp. 95–184.Google Scholar
  79. Mohan, V.P., Scanga, C.A., Yu, K., et al., Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology, Infect. Immun., 2001, vol. 69, pp. 1847–1855.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Moreno, C., Mehlert, A., and Lamb, J., The inhibitory effects of mycobacterial lipoarabinomannan and polysaccharides upon polyclonal and monoclonal human T cell proliferation, Clin. Exp. Immunol., 1988, vol. 74, pp. 206–210.PubMedPubMedCentralGoogle Scholar
  81. Nguyen, L. and Pieters, J., The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages, Trends Cell Biol., 2005, vol. 15, pp. 269–276.PubMedCrossRefGoogle Scholar
  82. Noss, E.H., Pai, R.K., Sellati, T.J., et al., Toll-like receptor 2-dependent inhibition of macrophage class IIMHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis, J. Immunol., 2001, vol. 167, pp. 910–918.PubMedCrossRefGoogle Scholar
  83. Pai, R.K., Pennini, M.E., Tobian, A.A., et al., Prolonged toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages, Infect. Immun., 2004, vol. 72, pp. 6603–6614.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Park, H.D., Guinn, K.M., Harrell, M.I., et al., Rv3133c/DosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis, Mol. Microbiol., 2003, vol. 48, pp. 833–843.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pasula, R., Downing, J.F., Wright, J.R., et al., Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages, Am. J. Respir. Cell. Mol. Biol., 1997, vol. 17, pp. 209–217.PubMedCrossRefGoogle Scholar
  86. Pennini, M.E., Pai, R.K., Schultz, D.C., et al., Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFNgamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling, J. Immunol., 2006, vol. 176, pp. 4323–4330.PubMedCrossRefGoogle Scholar
  87. Pinxteren van, L.A., Cassidy, J.P., Smedegaard, B.H., et al., Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells, Eur. J. Immunol., 2000, vol. 30, pp. 3689–3698.CrossRefGoogle Scholar
  88. Price, A., Wickner, W., and Ungermann, C., Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion, J. Cell Biol., 2000, vol. 148, pp. 1223–1229.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Prigozy, T.I., Sieling, P.A., Clemens, D., et al., The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules, Immunity, 1997, vol. 6, pp. 187–197.PubMedCrossRefGoogle Scholar
  90. Primm, T.P., Andersen, S.J., Mizrahi, V., et al., The stringent response of Mycobacterium tuberculosis is required for long-term survival, J. Bacteriol., 2000, vol. 182, pp. 4889–4898.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Prozorov, A.A. and Danilenko, V.N., Mycobacteria of the tuberculosis complex: genomics, molecular epidemiology, and evolution trends, Biol. Bull. Rev., 2011, vol. 1, no. 6, pp. 483–495.CrossRefGoogle Scholar
  92. Prozorov, A.A., Fedorova, I.A., Bekker, O.B., and Danilenko, V.N., The virulence factors of Mycobacterium tuberculosis: genetic control, new conceptions, Russ. J. Genet., 2014, vol. 50, no. 8, pp. 775–797.CrossRefGoogle Scholar
  93. Pugin, J., Heumann, I.D., Tomasz, A., et al., CD14 is a pattern recognition receptor, Immunity, 1994, vol. 1, pp. 509–516.PubMedCrossRefGoogle Scholar
  94. Rajaram, M.V., Ni, B., Morris, J.D., et al., Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 17408–17413.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ramakrishnan, L., Federspiel, N.A., and Falkow, S., Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family, Science, 2000, vol. 288, pp. 1436–1439.PubMedCrossRefGoogle Scholar
  96. Rindi, L., Lari, N., and Garzelli, C., Search for genes potentially involved in Mycobacterium tuberculosis virulence by mRNA differential display, Biochem. Biophys. Res. Commun., 1999, vol. 258, pp. 94–101.PubMedCrossRefGoogle Scholar
  97. Roach, D.R., Briscoe, H., Saunders, B., et al., Secreted lymphotoxin-a is essential for the control of an intracellular bacterial infection, J. Exp. Med., 2001, vol. 193, pp. 239–246.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Russell, D.G., Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol., 2007, vol. 5, pp. 39–47.PubMedCrossRefGoogle Scholar
  99. Russell, D.G., Mycobacterium and seduction of the macrophage, in Mycobacteria: Molecular Biology and Virulence, Ratledge, C. and Dale, J.W., Eds., New York: Wiley, 2009, pp. 371–388.Google Scholar
  100. Russell, D.G., Mycobacterium tuberculosis and the intimate discourse of a chronic infection, Immunol. Rev., 2011, vol. 240, pp. 252–268.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Saleh, M.T. and Belisle, J.T., Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases, J. Bacteriol., 2000, vol. 182, pp. 6850–6853.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sato, T.K., Rehling, P., Peterson, M.R., et al., Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion, Mol. Cell, 2000, vol. 6, pp. 661–671.PubMedCrossRefGoogle Scholar
  103. Scanga, C.A., Mohan, V.P., Yu, K., et al., Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2, J. Exp. Med., 2000, vol. 192, pp. 347–358.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schlesinger, L.S., Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors, J. Immunol., 1993, vol. 150, pp. 2920–2930.PubMedGoogle Scholar
  105. Schlesinger, L.S., Bellinger-Kawahara, C.G., Payne, N.R., and Horwitz, M.A., Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3, J. Immunol., 1990, vol. 144, pp. 2771–2780.PubMedGoogle Scholar
  106. Schlesinger, L.S., Hull, S.R., and Kaufman, T.M., Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages, J. Immunol., 1994, vol. 152, pp. 4070–4079.PubMedGoogle Scholar
  107. Schlesinger, L.S., Kaufman, T.M., Iyer, S., et al., Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages, J. Immunol., 1996, vol. 157, pp. 4568–4575.PubMedGoogle Scholar
  108. Schorey, J.S., Carroll, M.C., and Brown, E.J., A macrophage invasion mechanism of pathogenic mycobacteria, Science, 1997, vol. 277, pp. 1091–1093.PubMedCrossRefGoogle Scholar
  109. Seals, D.F., Eitzen, G., Margolis, N., et al., A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 9402–9407.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Selbach, M., Schwanhausser, B., Thierfelder, N., et al., Widespread changes in protein synthesis induced by microRNAs, Nature, 2008, vol. 455, pp. 58–63.PubMedCrossRefGoogle Scholar
  111. Seto, S., Tsujimura, K., and Koide, Y., Rab GTPases regulating phagosome maturation are differentially recruited to mycobacterial phagosomes, Traffic, 2011, vol. 12, pp. 407–420.PubMedCrossRefGoogle Scholar
  112. Shiloh, M.U. and Nathan, C.F., Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria, Curr. Opin. Microbiol., 2000, vol. 3, pp. 35–42.PubMedCrossRefGoogle Scholar
  113. Sibley, L.D., Hunter, S.W., Brennan, P.J., and Krahenbuhl, J.L., Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages, Infect. Immun., 1988, vol. 56, pp. 1232–1236.PubMedPubMedCentralGoogle Scholar
  114. Simonsen, A., Gaullier, J.M., D’Arrigo, A., and Stenmark, H., The Rab5 effector EEA1 interacts directly with syntaxin-6, J. Biol. Chem., 1999, vol. 274, pp. 28857–28860.PubMedCrossRefGoogle Scholar
  115. Singh, P.P., LeMaire, C., Tan, J.C., et al., Exosomes released from M. tuberculosis infected cells can suppress IFN-g mediated activation of native macrophages, PLoS One, 2011, vol. 6, p. e18564.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Stroupe, C., Collins, K.M., Fratti, R.A., and Wickner, W., Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p, EMBO J., 2006, vol. 25, pp. 1579–1589.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sturgill-Koszycki, S., Schaible, U.E., and Russell, D.G., Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis, EMBO J., 1996, vol. 15, pp. 6960–6968.PubMedPubMedCentralGoogle Scholar
  118. Sturgill-Koszycki, S., Schlesinger, P.H., Chakraborty, P., et al., Lack of acidification in mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase, Science, 1994, vol. 263, pp. 678–681.PubMedCrossRefGoogle Scholar
  119. Sun, J., Deghmane, A.E., Soualhine, H., et al., Mycobacterium bovis BCG disrupts the interaction of Rab7 with RILP contributing to inhibition of phagosome maturation, J. Leukocyte Biol., 2007, vol. 82, pp. 1437–1445.PubMedCrossRefGoogle Scholar
  120. Sun-Wada, G.H., Tabata, H., Kawamura, N., et al., Direct recruitment of H-ATPase from lysosomes for phagosomal acidification, J. Cell Sci., 2009, vol. 122, pp. 2504–2513.PubMedCrossRefGoogle Scholar
  121. Sutterwala, F.S., Rosenthal, L.A., and Mosser, D.M., Cooperation between CR1 (CD35) and CR3 (CD 11b/CD18) in the binding of complement-opsonized particles, J. Leukocyte Biol., 1996, vol. 59, pp. 883–890.PubMedGoogle Scholar
  122. Taylor, M.E. and Drickamer, K., Structural requirements for high affinity binding of complex ligands by the macrophage mannose receptor, J. Biol. Chem., 1993, vol. 268, pp. 399–404.PubMedGoogle Scholar
  123. Tenner, A.J., Robinson, S. L., Borchelt, J., and Wright, J.R., Human pulmonary surfactant protein (Sp-A), a protein structurally homologous to C1q, can enhance FcRand CR1-mediated phagoctosis, J. Biol. Chem., 1989, vol. 264, pp. 13923–13928.PubMedGoogle Scholar
  124. Vergne, I., Chua, J., Lee, H.H., et al., Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 4033–4038.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Vergne, I., Chua, J., Singh, S.B., and Deretic, V., Cell biology of Mycobacterium tuberculosis phagosome, Ann. Rev. Cell Dev. Biol., 2004, vol. 20, pp. 367–394.CrossRefGoogle Scholar
  126. Vida, T. and Gerhardt, B., A cell-free assay allows reconstitution of Vps33p-dependent transport to the yeast vacuole/lysosome, J. Cell Biol., 1999, vol. 146, pp. 85–97.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wayne, L.G., Dormancy of Mycobacterium tuberculosis and latency of disease, Eur. J. Clin. Microbiol. Infect. Dis., 1994, vol. 13, pp. 908–914.PubMedCrossRefGoogle Scholar
  128. Weber, I., Fritz, C., Ruttkowski, S., et al., Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice, Mol. Microbiol., 2000, vol. 35, pp. 1017–1025.PubMedCrossRefGoogle Scholar
  129. Weikert, L.F., Edwards, K., Chroneos, Z.C., et al., Sp-A enhances uptake of bacillus Calmette-Guerin by macrophages through a specific Sp-A receptor, Am. J. Physiol., 1997, vol. 272, pp. 989–995.Google Scholar
  130. Wong, D., Bach, H., Hmama, Z., and Av-Gay, Y., Mycobacterium tuberculosis protein tyrosine phosphatase A disrupts phagosome acidification by exclusion of host vacuolar-H-ATPase, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 19371–19376.PubMedPubMedCentralCrossRefGoogle Scholar
  131. World Health Organization, Geneva, Switzerland, 2002.Google Scholar
  132. Xu, S., Cooper, A., Sturgill-Koszycki, S., et al., Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages, J. Immunol., 1994, vol. 153, pp. 2568–2578.PubMedGoogle Scholar
  133. Young, D.B. and Garbe, T., Lipoprotein antigens of M. tuberculosis, Res. Microbiol., 1991, vol. 142, pp. 55–65.PubMedCrossRefGoogle Scholar
  134. Zhang, Y., Persistent and dormant tubercle bacilli and latent tuberculosis, Front. Biosci., 2004, vol. 9, pp. 1136–1156.PubMedCrossRefGoogle Scholar
  135. Zimmerli, S., Edwards, S., and Ernst, J.D., Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages, Am. J. Respir. Cell. Mol. Biol., 1996, vol. 15, pp. 760–770.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations