Advertisement

Biology Bulletin Reviews

, Volume 6, Issue 2, pp 177–188 | Cite as

Variability of genome size in conifers under extreme environmental conditions

  • T. S. Sedel’nikova
Article

Abstract

Transformation of the genome size in conifers growing in an extreme environment is manifested in the variability of the number of chromosomes, content of nuclear DNA, modulation of simple repetitive DNA sequences, specificity of the localization and activity of ribosomal DNA genes, activity of retrotransposons, induction of mutation processes, and polymorphism of chromosome rearrangements.

Keywords

coniferous extreme growing conditions genome chromosome number DNA amount simple repetitive DNA sequences genes of ribosomal DNA cell genetic elements chromosomal rearrangements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, M.R., Polyploidy in gymnosperms: revisited, Silvae Genet., 2005, vol. 54, no. 2, pp. 59–69.Google Scholar
  2. Ahuja, M.R. and Neale, D., Evolution of genome size in conifers, Silvae Genet., 2005, vol. 54, no. 3, pp. 126–137.Google Scholar
  3. Auckland, L., Johnston, J., Price, H., and Bridgwater, F., Stability of nuclear DNA content among divergent and isolated populations of Fraser fir, Can. J. Bot., 2001, vol. 79, pp. 1375–1378.Google Scholar
  4. Badaeva, E.D. and Salina, E.A., Structure of genome and chromosomal analysis of the plants, Vavilov. Zh. Genet. Selekts., 2013, vol. 17, nos. 4/2, pp. 1017–1043.Google Scholar
  5. Bennett, M.D., Variation in genomic form in plants and its ecological implication, New Phytol., 1987, vol. 16, pp. 93–108.Google Scholar
  6. Bobola, M.S., Smith, D.E., and Klein, A.S., Five major nuclear chromosome repeats represent a large and variable fraction of the genomic DNA of Picea rubens and P. mariana, Mol. Biol. Evol., 1992, vol. 9, pp. 125–137.PubMedGoogle Scholar
  7. Boguni, F., Muratovi, E., Ballian, D., et al., Genome size stability among five subspecies of Pinus nigra Arnold sl., Environ. Exp. Bot., 2007, vol. 59, no. 3, pp. 354–360.CrossRefGoogle Scholar
  8. ccBoguni, F., Siljak-Yakovlev, S., Muratovi, E., and Ballian, D., Different karyotype patterns among allopathic Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics, Plant Biol., 2011, vol. 13, no. 1, pp. 194–200.CrossRefGoogle Scholar
  9. Borisov, Yu.M., B-chromosomes and plasticity of a species, Ekol. Genet., 2013, vol. 11, no. 2, pp. 73–83.Google Scholar
  10. Butorina, A.K., Evolutionary factors of wood karyotypes, Usp. Sovrem. Biol., 1989, vol. 108, no. 3.(6), pp. 342–357.Google Scholar
  11. Butorina, A.K. and Evstratov, N., The first detected case of amitosis in pine, For. Genet., 1996, vol. 3, no. 3, pp. 137–139.Google Scholar
  12. Cai, Q., Zhang, D., Liu, Z.-L., and Wang, X.-R., Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus, Ann. Bot., 2006, vol. 97, pp. 715–722.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Camacho, J.P.M., B-chromosomes, in The Evolution of the Genome, Gregary, T.R., Ed., San Diego, CA: Elsevier, 2005, pp. 223–285.CrossRefGoogle Scholar
  14. Dhillon, S.S., Berlyn, G.P., and Miksche, J.P., Nuclear DNA content in populations of Pinus rigida, Am. J. Bot., 1978, vol. 65, pp. 192–196.CrossRefGoogle Scholar
  15. Doudrick, R.L., Heslop-Harrison, J.S., Nelson, C.D., et al., Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding, J. Hered., 1995, vol. 86, no. 4, pp. 289–296.Google Scholar
  16. Eckert, A.J. and Hall, B.D., Phylogeny, historical biogeography, and diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses, Mol. Phylogenet. Evol., 2006, vol. 40, pp. 166–182.PubMedCrossRefGoogle Scholar
  17. El-Lakany, M.H., Sziklai, O., Berney, J.L., and De-Vescovi, M.A., Possible causes and applications of intraspecific variation in DNA contents of Douglas-fir (Pseudotsuga menziesii), Egypt. J. Genet. Cytol., 1975, vol. 4, no. 2. p. 478.Google Scholar
  18. Elsik, C.G. and Williams, C.G., Retroelements contribute to the excess low-copy-number DNA in pine, Mol. Genet. Genome, 2000, vol. 264, pp. 47–55.CrossRefGoogle Scholar
  19. Farjon, A., World Checklist and Bibliography of Conifers, Kew, UK: R. Bot. Garden, 1998.Google Scholar
  20. Fay, M.F., Cowan, R.S., and Leitch, I.J., The effect of DNA amount on the quality and utility of AFLP fingerprints, Ann. Bot., 2005, vol. 95, pp. 237–246.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Feschotte, C. and Pritham, E.J., DNA transposons and the evolution of eukaryotic genomes, Annu. Rev. Genet., 2007, vol. 41, pp. 331–336.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Friesen, N., Brandes, A., and Heslop-Harrison, J.S., Diversity, origin and distribution of retrotransposons (gypsy and copia) in conifers, Mol. Biol. Evol., 2001, vol. 18, no. 7, pp. 1176–1188.PubMedCrossRefGoogle Scholar
  23. Gamalei, Yu.V., Cryophytes of Eurasia: origin and structural-functional features, Bot. Zh., 2011, vol. 96, no. 12, pp. 1521–1546.Google Scholar
  24. Gamalei, Yu.V. and Scheremetiev, S.N., Trends in genome evolution of the terrestrial and secondary-aquatic herbs, Tsitologiya, 2012, vol. 54, no. 6, pp. 449–458.Google Scholar
  25. Gerashchenkov, G.A. and Rozhnova, N.A., Mobile genetic elements in plant sex evolution, Russ. J. Genet., 2010, vol. 46, no. 11, pp. 1271–1281.CrossRefGoogle Scholar
  26. Garner, T.W.J., Genome size and microsatellites: the effect of nuclear size on amplification potential, Genome, 2002, vol. 45, pp. 212–215.PubMedCrossRefGoogle Scholar
  27. Gernandt, D.S. and Liston, A., Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae), Am. J. Bot., 1999, vol. 86, no. 5, pp. 711–723.PubMedCrossRefGoogle Scholar
  28. Goryachkina, O.V., Badaeva, E.D., Muratova, E.N., and Zelenin, A.V., Molecular cytogenetic analysis of Siberian Larix species by fluorescence in situ hybridization, Plant Syst. Evol., 2013, vol. 299, pp. 471–479.CrossRefGoogle Scholar
  29. Govindraju, D.R. and Cullis, C.A., Ribosomal DNA variation among populations of Pinus rigida Mill. (pitch pine) ecosystem. I. Distribution of copy numbers, Heredity, 1982, vol. 69, pp. 133–140.CrossRefGoogle Scholar
  30. Grif, V.G., Quantity of DNA per genome in biosystematics of the plants, Tsitologiya, 1998, vol. 40, no. 7, pp. 690–707.Google Scholar
  31. Grotkopp, E., Rejmanek, M., Sanderson, M., and Rost, T., Evolution of genome size in pines (Pinus ssp.) and its life history correlates: supertree analysis, Evolution, 2004, vol. 58, pp. 1705–1729.PubMedCrossRefGoogle Scholar
  32. Gullis, C.A., Griessen, G.P., Gorman, S.W., and Teasdale, R.D., The 25S, 18S, and 5S ribosomal RNA genes from Pinus radiata D. Don., in Proc. 2nd Workshop IUFRO “Molecular Genetics of Forest Trees,” Working Party s2.04.06, Cheliak, W.M. and Yapa, A.C., Eds., Ottawa: Can. For. Serv., 1988, pp. 34–40.Google Scholar
  33. Hall, S.E., Dvorak, W., Johnston, J.S., et al., Flow cytometric analysis of DNA content for tropical and temperate New World pines, Ann. Bot., 2000, vol. 86, pp. 1081–1086.CrossRefGoogle Scholar
  34. Hancock, J.M., Genome size and accumulation of simple sequence repeats: implications of new data from genome sequencing projects, Genetica, 2002, vol. 115, pp. 93–103.PubMedCrossRefGoogle Scholar
  35. Hawkins, J.S., Grover, C.E., and Wendel, J.F., Repeated big bangs and the expanding universe: directionality in plant genome size evolution, Plant Sci., 2008, vol. 174, pp. 557–562.CrossRefGoogle Scholar
  36. Hembelen, V., Beridze, T.G., Bakhman, L.I., et al., Satellite DNA, Usp. Biol. Khim., 2003, vol. 43, pp. 267–306.Google Scholar
  37. Hizume, M., Kondo, T., Shibata, F., and Ishizuku, R., Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu strico and Sciadopityaceae, Cytologia, 2001, vol. 66, pp. 307–311.Google Scholar
  38. Il’inov, A.A., Raevskii, B.V., Rudkovskaya, O.A., and Topchieva, L.V., Comparative analysis of phenotypic and genetic diversity of the north-taiga less disturbed populations of (Picea × fennica), Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, 2011, no. 1, pp. 37–47.Google Scholar
  39. Jones, R.N., B chromosomes in plants, Plant Biosyst., 2012, vol. 146, no. 3, pp. 727–737.Google Scholar
  40. Joyner, K., Wang, X.-R., Johnston, J.S., et al., DNA content for Asian pines parallels New World relatives, Can. J. Bot., 2001, vol. 79, pp. 192–191.Google Scholar
  41. Kamm, A., Doudrick, R.L., Heslop-Harrison, J.S., and Schmidt, T., The genomic and physical organization of Ty1 copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 2708–2713.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Karpyuk, T.V., Muratova, E.N., Vladimirova, O.S., and Sedelnikova, T.S., Karyological analysis of the Schrenk’s spruce, Lesovedenie, 2009, no. 1, pp. 52–58.Google Scholar
  43. Karvonen, P., Karjalainen, M., and Sovolainen, O., Ribosomal RNA genes in Scots pine (Pinus sylvestris L.): chromosomal organization and structure, Genetica, 1993, vol. 88, pp. 59–68.CrossRefGoogle Scholar
  44. Khoshoo, T.N., Polyploidy in gymnosperms, Evolution, 1959, vol. 13, no. 1, pp. 24–39.CrossRefGoogle Scholar
  45. Knight, C.A., Molinari, N.A., and Petrov, D.A., The large genome constraint hypothesis: evolution, ecology and phenotype, Ann. Bot., 2005, vol. 95, pp. 177–190.PubMedCrossRefGoogle Scholar
  46. Korshikov, I.I., Demkovich, A.E., Makogon, I.V., et al., Analysis of variability of the plus trees of the Scots pine using isoenzymes and microsatellite loci, in Faktori eksperimental’noi evolyutsii organizmiv (Factors of Experimental Evolution of Organisms), Kyiv: Logos, 2013, vol. 13, pp. 202–206.Google Scholar
  47. Korshikov, I.I., Tkacheva, Yu.A., and Lapteva, E.V., Cytogenetic dysfunctions of the seedlings of coniferous as the complex indicator of the influence of technogenically polluted environment, Prom. Bot., 2012, no. 12, pp. 135–141.Google Scholar
  48. Kossak, D.S. and Kinlaw, C.S., IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has an extensive history in pines, Plant Mol. Biol., 1999, vol. 39, pp. 417–426.CrossRefGoogle Scholar
  49. Kozubov, G.M. and Muratova, E.N., Sovremennye golosemennye (Modern Gymnosperms), Leningrad: Nauka, 1986.Google Scholar
  50. Kriebel, H.B., Molecular structure of forest trees, in Clonal Forestry I. Genetics and Biotechnology, Ahuja, M.R. and Libby, W.J., Eds., Berlin: Springer-Verlag, 1993, pp. 224–240.CrossRefGoogle Scholar
  51. Krutovskii, K.V., Prospective implementation of genomic studies in forestry, Sib. Lesn. Zh., 2014, no. 4, pp. 11–15.Google Scholar
  52. Kunakh, V.A., Genome variability of the plant somatic cells. 1. Variability in ontogenesis, Biopolim. Kletka, 1994, vol. 10, no. 6, pp. 5–35.Google Scholar
  53. Kunakh, V.A., Additional and B chromosome in the plants: origin and biological role, Visn. Ukr. Tov. Genet. Selekts., 2010, vol. 8, no. 1, pp. 99–139.Google Scholar
  54. Kunakh, V.A., Plasticity of genome of somatic cells and plant adaptation, in Molekulyarnaya i prikladnaya genetika (Molecular and Applied Genetics), Minsk: Inst. Genet. Tsitol., Nats. Akad. Nauk Belarus., 2011a, vol. 12, pp. 7–14.Google Scholar
  55. Kunakh, V.A., Ontogenetic plasticity of genome as the basis of plant adaptation, in Zhebrakovsie chteniya “Preobrazovanie genomov” (The Zhebrakov’s Conf. “Genome Transformations”), Minsk: Inst. Genet. Tsitol., Nats. Akad. Nauk Belarus., 2011b, pp. 3–53.Google Scholar
  56. Kunakh, V.A., Mobil’ni genetichni elementi i plastichnist’ genomu roslin (Mobile Genetic Elements and Plasticity of the Plant Genome), Kyiv: Logos, 2013.Google Scholar
  57. L’Homme, Y., Séguin, A., and Tremblay, F.M., Different classes of retrotransposons in coniferous spruce species, Genome, 2000, vol. 43, pp. 1084–1089.PubMedCrossRefGoogle Scholar
  58. Lin, Y.Q., Bitonti, M.B., Ciolli, M., and Innocenti, A.M., Somatic mutagenesis in Pinus laricio. A cytophotomatric analysis of DNA and histone content in 2C meristematic nuclei, Caryologia, 1988, vol. 41, pp. 137–142.CrossRefGoogle Scholar
  59. Litvinchuk, S.N., Rozanov, Yu.M., Usmanova, N.M., et al., Variability of BM224 and Bcal7 microsatellites in populations of Bufo viridis complex different in genome size and ploidy, Tsitologiya, 2006, vol. 48, no. 4, pp. 332–345.Google Scholar
  60. Liu, Z-L., Cheng, Ch., and Li, J., High genetic differentiation in natural populations of Pinus henriy and Pinus tabuliformis as revealed by nuclear microsatellites, Biochem. Syst. Ecol., 2012, vol. 42, pp. 1–9. doi 10.1016/jbse.2011.07.005CrossRefGoogle Scholar
  61. Liu, R.Y., Vitte, C., Ma, J.X., et al., A GeneTrek analysis of the maize genome, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 11844–11849.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liu, Z-L., Zhang, D., Hong, D-Y., and Wang, X-R., Chromosomal localization of 5S and 18S–5.8S–25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization, Theor. Appl. Genet., 2003, vol. 106, no. 2, pp. 198–204.PubMedGoogle Scholar
  63. Mashkina, O.S., Kalaev, V.N., Muraya, L.S., and Lelikova, E.S., Cytogenetic reactions of seed progeny of the Scots pine on combined anthropogenic pollution in vicinity of the Novolipetsk Metallurgical Factory, Ekol. Genet., 2009, vol. 7, no. 3, pp. 17–29.Google Scholar
  64. Melnikova, M.N., Petrov, N.B., Lomov, A.A., la Porta, N., and Politov, D.V., Testing of microsatellite primers with different populations of Eurasian spruces Picea abies (L.) Karst. and Picea obovata Ledeb, Russ. J. Genet., 2012, vol. 48, no. 5, pp. 562–566.CrossRefGoogle Scholar
  65. McClintock, B., The significance of responses of the genome to challenge, Science, 1984, vol. 226, pp. 792–801.PubMedCrossRefGoogle Scholar
  66. Micieta, K. and Murin, G., The use of Pinus sylvestris L. and Pinus nigra Arnold as bioindicator species for environmental pollution, in Proc. IUFRO Cytogenetics Working Party “Cytogenetic Studies of Forest Trees and Shrub Species,” Borzan, Z. and Schlarbaum, S.E., Eds., Zagreb: Hrvatske Sume, 1997, pp. 157–177.Google Scholar
  67. Mikshe, J.P., Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana, Can. J. Genet. Cytol., 1968, vol. 10, pp. 590–600.CrossRefGoogle Scholar
  68. Mikshe, J.P., Intraspecific variation of DNA per cell between Picea sitchensis (Bong.) Carr. provenances, Chromosoma, 1971, vol. 32, pp. 343–352.Google Scholar
  69. Miller, C.N., Mesozoic conifers, Bot. Rev., 1977, vol. 43, no. 2, pp. 217–280.CrossRefGoogle Scholar
  70. Moir, R.B. and Fox, D.P., Supernumerary chromosome distribution in provenances of Picea sitchensis (Bong.) Carr., Silvae Genet., 1977, vol. 26, no. 1, pp. 26–33.Google Scholar
  71. Morse, A.M., Peterson, D.G., Islam-Faridi, M.N., et al., Evolution of genome size and complexity in Pinus, PLoS One, 2009, vol. 4, no. 2. p. e4332. doi 10.1371/journalpone.0004332PubMedPubMedCentralCrossRefGoogle Scholar
  72. Muratova, E.N., B chromosomes of gymnosperms, Usp. Sovrem. Biol., 2000, vol. 120, no. 5, pp. 452–465.Google Scholar
  73. Muratova, E.N. and Kruklis, M.V., Content of DNA in gymnosperms related to their evolution, Usp. Sovrem. Biol., 1981, vol. 91, no. 1, pp. 29–48.Google Scholar
  74. Muratova, E.N. and Kruklis, M.V., Polyploidy, aneuploidy, and haploidy of gymnosperms, Tsitol. Genet., 1982, no. 6, pp. 56–66.Google Scholar
  75. Muratova, E.N. and Kruklis, M.V., Khromosomnye chisla golosemennykh rastenii (Chromosome Numbers of Gymnosperms), Novosibirsk: Nauka, 1988.Google Scholar
  76. Muratova, E.N. and Sedelnikova, T.S., Karyotypic variability and anomalies in populations of conifers from Siberia and Far East, in Proc. Second IUFRO Cytogenetics Working Party “Cytogenetic Studies of Forest Trees and Shrubs—Review, Present Status, and Outlook on the Future,” Zloven: Arbora, 2000, pp. 129–141.Google Scholar
  77. Murray, B.G., Nuclear DNA amounts in gymnosperms, Ann. Bot., 1998, vol. 82, pp. 3–15.CrossRefGoogle Scholar
  78. Murray, B.G., When does intraspecific C-value variation become taxonomically significant? Ann. Bot., 2005, vol. 95, pp. 119–125.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nechaeva, Yu.S., Boronnikova, S.V., Yusupov, R.R., and Haintze, B., Analysis of polymorphism of ISSR-markers in natural and artificial populations of larch, Fundam. Issled., 2013, no. 6, pp. 1426–1431.Google Scholar
  80. Nkongolo, K.K. and Mehes-Smith, M., Karyotype evolution in the Pinaceae: implication with molecular phylogeny, Genome, 2012, vol. 55, no. 10, pp. 735–753.PubMedCrossRefGoogle Scholar
  81. Ohri, D., Genome size variation and plant systematics, Ann. Bot., 1998, vol. 82, pp. 75–83.CrossRefGoogle Scholar
  82. Ohri, D. and Khoshoo, T.N., Genome size in gymnosperms, Pol. Syst. Evol., 1986, vol. 153, pp. 119–132.CrossRefGoogle Scholar
  83. Oreshkova, N.V., Belokon, M.M., and Jamiyansuren, S., Genetic diversity, population structure, and differentiation of Siberian larch, Gmelin larch, and Cajander larch on SSR-marker data, Russ. J. Genet., 2013, vol. 49, no. 2, pp. 178–186.Google Scholar
  84. Oreshkova, N.V., Sedel’nikova, T.S., Pimenov, A.V., and Efremov, S.P., Analysis of genetic structure and differentiation of the bog and dry land populations of Pinus sibirica Du Tour based on nuclear microsatellite loci, Russ. J. Genet., 2014, vol. 50, no. 9, pp. 934–941.CrossRefGoogle Scholar
  85. Patrushev, L.I. and Minkevich, I.G., Problems of eukaryotic genomes, Usp. Biol. Khim., 2007, vol. 47, pp. 293–370.Google Scholar
  86. Peruzzi, L., Góralski, G., Joachimiak, A.J., and Bedini, G., Does actually mean chromosome number increase with latitude in vascular plants? An answer from the comparison of Italian, Slovak and Polish floras, Comp. Cytogenet., 2012, vol. 6, no. 4, pp. 371–377.PubMedCrossRefGoogle Scholar
  87. Pimenov, A.V. and Sedelnikova, T.S., Anomalies of mitosis in seedlings of Pinus sylvestris (Pinaceae) on eutrophic dried peatbog, Bot. Zh., 2006, vol. 91, no. 10, pp. 1537–1544.Google Scholar
  88. Pimenov, A.V., Sedelnikova, T.S., and Tashev, A.N., Chromosome numbers of Pinaceae species in Bulgaria, Bot. Zh., 2012, vol. 97, no. 9, pp. 1238–1241.Google Scholar
  89. Price, H.J., Sparrow, A.H., and Nauman, A.F., Evolutionary and development considerations of the variability of nuclear parameters in higher plants. I. Genome volume, interphase chromosome volume, and estimated DNA content of 236 gymnosperms, in Brookhaven Symp. in Biology “Basic Mechanisms in Plant Morphogenesis,” New York, 1974, no. 25, pp. 390–421.Google Scholar
  90. Prokopowich, C.D., Gregory, T.R., and Crease, T.J., The correlation between rDNA copy number and genome size in eukaryotes, Genome, 2003, vol. 46, pp. 48–50.PubMedCrossRefGoogle Scholar
  91. Puizina, J., Sviben, T., Kraja i Sokol, I., et al., Cytogenetic and molecular characterization of the Abies alba genome and its relationship with other members of the Pinaceae, Plant Biol., 2008, no. 10, pp. 256–267.PubMedCrossRefGoogle Scholar
  92. Rake, A.V., Mikshe, R.B., Hall, R.B., and Hansen, K.M., DNA re-association kinetics of four conifers, Can. J. Genet. Cytol., 1980, vol. 22, pp. 69–79.CrossRefGoogle Scholar
  93. Rocheta, M., Cordeiro, J., Oliveira, M., and Miguel, C., PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster, Planta, 2007, vol. 225, pp. 551–562.PubMedCrossRefGoogle Scholar
  94. Rubtsov, N.B. and Borodin, P.M., Evolution of chromosome: from A to B and back, Priroda (Moscow), 2002, no. 3, pp. 59–66.Google Scholar
  95. Sedelnikova, T.S., Muratova, E.N., and Pimenov, A.V., Variability of chromosome numbers in gymnosperms, Usp. Sovrem. Biol., 2010a, vol. 30, no. 6, pp. 557–568.Google Scholar
  96. Sedelnikova, T.S., Muratova, E.N., and Pimenov, A.V., Ecology-dependent differentiation of karyotypes of the wetland and dry land populations of Pinaceae species, Bot. Zh., 2010b, vol. 95, no. 11, pp. 1513–1520.Google Scholar
  97. Sedelnikova, T.S. and Pimenov, A.V., Cytogenetic features of woody plants adaptation in extreme environmental conditions, Bull. Nikitskogo Gos. Bot. Sada, 2002, no. 86, pp. 61–62.Google Scholar
  98. Sedel’nikova, T.S. and Pimenov, A.V., Chromosomal mutations in Siberian larch (Larix sibirica Ledeb.) on Taimyr Peninsula, Biol. Bull., 2007, vol. 34, no. 2, pp. 198–201.CrossRefGoogle Scholar
  99. Sedel’nikova, T.S. and Pimenov, A.V., Karyological and quantitative analysis of the redand yellow-anther forms of the Scots pine in wetland and upland ecotopes, in Faktori eksperimental’noi evolyutsii organizmiv (Factors of Experimental Evolution of Organisms), Kyiv: Logos, 2013, vol. 12, pp. 72–76.Google Scholar
  100. Sedelnikova, T.S., Pimenov, A.V., Grabovoi, V.N., and Ponomarenko, V.A., Chromosome number of Thuja occidentalis (Cupressaceae) cultivars in Sofievka National Dendrarium, Bot. Zh., 2014, vol. 99, no. 8, pp. 941–944.Google Scholar
  101. Sedelnikova, T.S., Pimenov, A.V., and Tashev, A.N., Chromosome number of Cupressaceae species at introduction in Bulgaria, Bot. Zh., 2011, vol. 96, no. 7, pp. 974–975.Google Scholar
  102. Sedelnikova, T.S., Pimenov, A.V., Tashev, A.N., and Efremova, T.T., Adaptive variability of genome of coniferous in extreme growing conditions, in Prats. IX zizdu Ukrains’ke tovaristvo genetikiv i selektsioneriv prisvyachenogo 125-richchyu vid dnya narozhdennya M.I. Vavilova “Dosyagnennya i problemi genetiki, selektsii ta biotekhnologii” (Proc. IX Congr. of Ukrainian Society of Geneticist and Selectionist Dedicated to 125th Anniversary of N.I. Vavilov “Achievements and Problems of Genetics, Selection, and Biotechnology”), Kyiv: Logos, 2012, vol. 4, pp. 262–267.Google Scholar
  103. Sederoff, R.R., Stomp, A.-M., Gwynn, B., et al., Application of DNA recombinant techniques in pines: a molecular approach to genetic engineering in forestry, in Cell and Tissue Culture in Forestry, Bonga, J.M. and Durzan, D.J., Eds., Dordrecht: Martinus Nijhoff, 1987, vol. 1, pp. 314–329.CrossRefGoogle Scholar
  104. Shchapova, A.I., Diversity of life cycles and their role in evolution of the base chromosome number in various types of living organisms, Vavilov. Zh. Genet. Selekts., 2013, vol. 17, no. 1, pp. 6–16.Google Scholar
  105. Sheikina, O.V., Demakov, Yu.P., Gladkov, Yu.F., and Unzhenina, O.V., Genetic variability and differentiation of the dry land and wetland population of Scots pine in Mari-El Republic, Nauch. Zh. Kuban. Gos. Agrar. Univ., 2013, no. 94 (10), pp. 1–12. http://ejkubagroru/2013/10pdf/54pdfGoogle Scholar
  106. Shibata, F. and Hizume, M., Comparative FISH karyotype analysis of 11 Picea species, Cytologia (Tokyo), 2008, vol. 73, no. 2, pp. 203–211.CrossRefGoogle Scholar
  107. Shmidt, A., Doudrick, R.L., Heslop-Harrison, J.S., and Shmidt, T., The contribution of short repeats of low sequence complexity to large conifer genomes, Theor. Appl. Genet., 2000, vol. 101, pp. 7–14.CrossRefGoogle Scholar
  108. Sormacheva, I.D. and Blinov, A.G., The plant LTR-retrotransposons, Vavilov. Zh. Genet. Selekts., 2011, vol. 15, no. 2, pp. 351–381.Google Scholar
  109. Stebbins, G.L., Chromosome Evolution in Higher Plants, London: Edward Arnold, 1971.Google Scholar
  110. Stuart-Rogers, C. and Flavell, A.J., The evolution of Ty1copia group retrotransposons in gymnosperms, Mol. Biol. Evol., 2001, vol. 18, pp. 155–163.PubMedCrossRefGoogle Scholar
  111. Teoh, S.B. and Rees, H., B-chromosomes in white spruce, Proc. R. Soc. B, 1977, vol. 198, no. 1133, pp. 325–344.CrossRefGoogle Scholar
  112. Vandelight, K.K., Nkongolo, K.K., Mehes, M., and Beckett, P., Genetic analysis of Pinus banksiana and Pinus resinosa populations from stressed sites contaminated with metals in Northern Ontario (Canada), Chem. Ecol., 2011, vol. 27, no. 4, pp. 369–380. doi 10.1080/02757540.2011.561790CrossRefGoogle Scholar
  113. Voytas, D.F., Cummings, M.P., Koniczny, A., et al., Copialike retrotransposons are ubiquitous among plants, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, no. 15, pp. 71–24.CrossRefGoogle Scholar
  114. Wachowiak, W., Stephan, B.R., Schulze, I., et al., A critical evaluation of reproductive barriers between closely related species using DNA markers—a case study in Pinus, Plant. Syst. Evol., 2006, vol. 257, pp. 1–8.CrossRefGoogle Scholar
  115. Wakamiya, I., Newton, R.J., Johnston, J.S., and Price, H.J., Genome size and environmental factors in the genus Pinus, Am. J. Bot., 1993, vol. 80, pp. 1235–1241.CrossRefGoogle Scholar
  116. Wakamiya, I., Price, H.J., Messina, M.G., and Newton, R.J., Pine genome diversity and water relations, Physiol. Plant, 1996, vol. 96, pp. 13–20.CrossRefGoogle Scholar
  117. Wendel, J.F. and Wessler, S.R., Retrotransposon-mediated genome evolution on a local ecological scale, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 6250–6252.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wicker, T. and Keller, B., Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families, Genome Res., 2007, vol. 17, pp. 1072–1081.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Willyard, A., Syring, J., Gernandt, D.S., et al., Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus, Mol. Biol. Evol., 2007, vol. 24, pp. 20–101.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Sukachev Institute of Forest, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations