Advertisement

Biology Bulletin Reviews

, Volume 5, Issue 6, pp 527–537 | Cite as

The role of viruses in the evolution of cyanobacteria

  • S. V. Shestakov
  • E. A. Karbysheva
Article

Abstract

Cyanophages play an important role in the evolution of cyanobacteria. They control cyanobacterium abundance, population dynamics, and the structure of natural communities. Cyanophages are a global reservoir of genetic information. They act as vectors that transfer genes, endow cyanobacteria with novel properties, and affect the rate and direction of evolutionary processes. Lysogeny makes a significant contribution to the maintenance of the gene pool and ecological adaptation of cyanobacteria. The integration of many cyanobacterial genes into cyanophage genomes indicates that a genetic transfer occurs between hosts and phages. Such a gene transfer performs the driving functions in adaptive microevolution. Analysis of the molecular base of cyanophage–host interactions strongly supports the concept of the coevolution of cyanophages and cyanobacterial genomes.

Keywords

evolution genomics cyanobacteria cyanophages horizontal gene transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, H.-W., Bacteriophage observations and evolution, Res. Microbiol., 2003, vol. 154, pp. 245–251.CrossRefPubMedGoogle Scholar
  2. Angly, F.E., Felts, B., Breitbart, M., et al., The marine viromes of four oceanic regions, PLoS Biol., 2006, vol. 4, no. 11, pp. 2121–2131.CrossRefGoogle Scholar
  3. Avrani, S., Wurtzel, O., Sharon, I., et al., Genomic islands variability facilitates Prochlorococcus—virus coexistence, Nature, 2011, vol. 474, pp. 604–608.CrossRefPubMedGoogle Scholar
  4. Bench, S.R., Hanson, T.E., Williamson, K.E., et al., Metagenomic characterization of Chesapeake Bay virioplankton, Appl. Environ. Microbiol., 2007, vol. 73, no. 23, pp. 7629–7641.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bhaya, D., Dufresne, A., Vaulot, D., and Grossman, A. Analysis of the hli gene family in marine and freshwater cyanobacteria, FEMS Microbiol. Lett., 2002, vol. 215, pp. 209–219.CrossRefPubMedGoogle Scholar
  6. Bouvier, T. and Del Giorgio, P.A., Key role of selective viral-induced mortality in determining marine bacterial community composition, Environ. Microbiol., 2007, vol. 9, no. 2, pp. 287–297.CrossRefPubMedGoogle Scholar
  7. Bragg, J.G. and Chisholm, S.W., Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene, PLoS One, 2008, vol. 3, no. 10, p. e3550.Google Scholar
  8. Breitbart, M., Marine viruses: truth or dare, Annu. Rev. Mar. Sci., 2012, vol. 4, pp. 425–448.CrossRefGoogle Scholar
  9. Bryan, M.J., Burroughs, N.J., Spence, E.M., et al., Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer, PLoS One, 2008, vol. 3, no. 4, p. e2048.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Buckling, A. and Rainey, P.B., Antagonistic co-evolution between a bacterium and a bacteriophage, Proc. R. Soc. Lond. B, 2002, vol. 269, pp. 931–936.CrossRefGoogle Scholar
  11. Cannon, R.E., Shane, M.S., and Bush, V.N., Lysogeny of a blue-green algae, Plectonema boryanum, Virology, 1971, vol. 45, pp. 149–153.CrossRefPubMedGoogle Scholar
  12. Chenard, C. and Suttle, C.A., Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters, Appl. Environ. Microbiol., 2008, vol. 74, no. 17, pp. 5317–5324.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Clokie, M.R.J., Millard, A.D., Letarov, A.V., and Heaphy, S., Phages in nature, Bacteriophage, 2011, vol. 1, no. 1, pp. 31–45.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Clokie, M.R.J., Millard, A.D., and Mann, N.H., T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology, Virol. J., 2010, vol. 7, pp. 291–310.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Clokie, M.R.J., Millard, A.D., Wilson, W.H., and Mann, N.H., Encapsidation of host DNA by bacteriophages infecting marine Synechococcus strains, FEMS Microbiol. Ecol., 2003, vol. 46, pp. 349–352.CrossRefPubMedGoogle Scholar
  16. Coleman, M.L., Sullivan, M.B., Martiny, A.C., et al., Genomic islands and the ecology and evolution of Prochlorococcus, Science, 2006, vol. 311, pp. 1768–1770.CrossRefPubMedGoogle Scholar
  17. Comeau, A.M. and Krish, H.M., War is peace—dispatches from the bacterial and phage killing fields, Curr. Opin. Microbiol., 2005, vol. 8, pp. 488–494.CrossRefPubMedGoogle Scholar
  18. Dammeyer, T., Bagby, S.C., Sullivan, M.B., et al., Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria, Curr. Biol., 2008, vol. 18, pp. 442–448.CrossRefPubMedGoogle Scholar
  19. Dekel-Bird, N.P., Avrani, S., Sabehi, G., et al., Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria, Environ. Microbiol., 2013, vol. 15, no. 5, pp. 1476–1491.CrossRefPubMedGoogle Scholar
  20. Dorigo, U., Jacquet, S., and Humbert, J.F., Cyanophage diversity inferred from g20 gene analyses in the largest natural lake in France, Lake Bourget, Appl. Environ. Microbiol., 2004, vol. 70, no. 2, pp. 1017–1022.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Dreher, T.W., Brown, N., Bozarth, C.S., et al., A freshwater cyanophage whose genome indicates close relationships to photosynthetic marine cyanomyophages, Environ. Microbiol., 2011, vol. 13, no. 7, pp. 1858–1874.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Dufresne, A., Ostrowski, M., Scanlan, D., et al., Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria, Genome Biol., 2008, vol. 9, no. 5. R. 90.Google Scholar
  23. Filee, J., Forterre, P., and Laurent, J., The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenesis, Res. Microbiol., 2003, vol. 154, pp. 237–243.CrossRefPubMedGoogle Scholar
  24. Flores, E., Muro-Pastor, A.M., and Meeks, J.C., Gene transfer to cyanobacteria in the laboratory and in nature, in The Cyanobacteria: Molecular Biology, Genomics, and Evolution, Herrero, A. and Flores, E., Eds., Norfolk, UK: Caiser, 2008, pp. 45–57.Google Scholar
  25. Fuhrman, J.A., Marine viruses and their biochemical and ecological effects, Nature, 1999, vol. 399, pp. 541–548.CrossRefPubMedGoogle Scholar
  26. Gao, E.-B., Gui, J.F., and Zhang, Q.Y., A novel cyanophage with a cyanobacterial nonbleaching protein A gene in the genome, J. Virol., 2012, vol. 86, no. 1, pp. 236–245.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Garza, D.R. and Suttle, C.A., The effect of cyanophages on the mortality of Synechococcus spp. and selection for UV resistant communities, Microbiol. Ecol., 1998, vol. 36, pp. 281–292.CrossRefGoogle Scholar
  28. Goryushkin, V.A., Shatokhina, E.S., Grigor’eva, G.A., and Shestakov, S.V., Lysogeny in unicellular cyanobacteriae, Vestn. Mosk. Univ., Ser. 6: Biol., Pochvoved., 1976, no. 1, pp. 82–84.Google Scholar
  29. Hambly, E. and Suttle, C.A., The virosphere, diversity, and genetic exchange within phage communities, Curr. Opin. Microbiol., 2005, vol. 8, pp. 444–450.CrossRefPubMedGoogle Scholar
  30. Heidelberg, J.F., Nelson, W.C., Schoenfeld, T., and Bhaya, D., Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes, PLoS One, 2009, vol. 4, no. 1, pp. e4169.Google Scholar
  31. Hellweger, F.L., Carrying photosynthesis genes increases ecological fitness of cyanophage in sillico, Environ. Microbiol., 2009, vol. 11, no. 6, pp. 1386–1394.CrossRefPubMedGoogle Scholar
  32. Hess, W.R., Comparative genomics of marine cyanobacteria and their phages, in The Cyanobacteria: Molecular Biology, Genomics, and Evolution, Herrero, A. and Flores, E., Eds., Norfolk, UK: Caiser Academic Press, 2008, pp. 89–116.Google Scholar
  33. Huang, S., Wang, K., Jiao, N., and Chen, F., Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchange, Environ. Microbiol., 2012, vol. 14, no. 2, pp. 540–558.CrossRefPubMedGoogle Scholar
  34. Ignacio-Espinoza, J.C. and Sullivan, M.B., Phylogenomic of T4 cyanophages: lateral gene transfer in the “core” and origins of host genes, Environ. Microbiol., 2012, vol. 14, no. 8, pp. 2113–2126.CrossRefPubMedGoogle Scholar
  35. Jing, R., Liu, J., Yu, Z., et al., Phylogenetic distribution of the capsid assembly protein gene (g20) of cyanophages in paddy floodwaters in Northeast China, PLoS One, 2014, vol. 9, no. 2, p. e88634.Google Scholar
  36. Kettler, G.C., Martiny, A.C., Huang, K., et al., Patterns and implications of gene gain and loss in the evolution of Prochlorococcus, PLoS Genet., 2007, vol. 3, no. 12. e231.Google Scholar
  37. Kopf, M., Klähn, S., Pade, N., et al., Comparative genome analysis of the closely related Synechocystis strains PCC 6714 and PCC 6803, DNA Res., 2014, vol. 21, pp. 255–266.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Kristensen, D.M., Mushegian, A.R., Dolja, V., and Koonin, E.V., New dimensions of the virus world discovered trough metagenomics, Trends Microbiol., 2010, vol. 18, no. 1, pp. 11–19.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Labrie, S.J., Frois-Moniz, K., Osburne, M.S., et al., Genomes of marine cyanopodoviruses reveal multiple origins of diversity, Environ. Microbiol., 2013, vol. 15, no. 5, pp. 1356–1376.CrossRefPubMedGoogle Scholar
  40. Labrie, S.J., Samson, J.E., and Moineau, S., Bacteriophage resistance mechanisms, Nat. Rev. Microbiol., 2010, vol. 8, no. 5, pp. 317–327.CrossRefPubMedGoogle Scholar
  41. Laybourn-Parry, J., Marshall, W.A., and Madan, N.J., Viral dynamics and patterns of lysogeny in saline Antarctic lakes, Polar Biol., 2007, vol. 30, pp. 351–358.CrossRefGoogle Scholar
  42. Lennon, J.T., Khatana, S.A.M., Marson, M.F., and Martiny, J.B.H., Is there a cost of virus resistance in marine cyanobacteria? ISME J., 2007, vol. 1, pp. 300–312.PubMedGoogle Scholar
  43. Limor-Waisberg, K., Carmi, A., Scherz, A., et al., Specialization versus adaptation: two strategies employed by cyanophages to enhance their translation efficiencies, Nucleic Acid Res., 2011, vol. 39, no. 14, pp. 6016–6028.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Lindell, D., Jaffe, J.D., Coleman, M.L., et al., Genomewide expression dynamics of a marine virus and host reveal features of co-evolution, Nature, 2007, vol. 449, pp. 83–86.CrossRefPubMedGoogle Scholar
  45. Lindell, D., Sullivan, M.B., Johnson, Z.J., et al., Transfer of photosynthesis genes to and from Prochlorococcus viruses, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 30, pp. 11013–11018.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Maaroufi, H. and Tanguay, R.M., Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host, PLoS One, 2013, vol. 8, no. 11. e81207.Google Scholar
  47. Malmstrom, R.R., Rodrigue, S., Huang, K,H., et al., Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis, ISME J., 2013, vol. 7, pp. 184–198.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Mann, N.H., Phages of the marine cyanobacterial picoplankton, FEMS Microbiol. Rev., 2003, vol. 27, pp. 17–34.CrossRefPubMedGoogle Scholar
  49. Mann, N.H., Clokie, M.R.J., Millard, A., et al., The genome of S-PM2, a “photosynthetic” T4-type bacteriophage that infects marine Synechococcus strains, J. Bacteriol., 2005, vol. 187, no. 9, pp. 3188–3200.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Marston, M.F. and Amrich, C.G., Recombination and microdiversity in costal marine cyanophages, Environ. Microbiol., 2009, vol. 11, pp. 2893–2903.CrossRefPubMedGoogle Scholar
  51. Marston, M.F., Pierciey, F.J., Shepard, A., et al., Rapid diversification of coevolving marine Synechococcus and a virus, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 12, pp. 4544–4549.PubMedCentralCrossRefPubMedGoogle Scholar
  52. McDaniel, L., Breitbart, M., Mobberley, J., et al., Metagenomic analysis of lysogeny in Tampa Bay: implications for prophage gene expression, PLoS One, 2008, vol. 3, no. 9, p. e3263.PubMedCentralCrossRefPubMedGoogle Scholar
  53. McDaniel, L., Houchin, L., Wiliamson, S.J., and Paul, J.H., Lysogeny in marine Synechococcus, Nature, 2002, vol. 415, p. 496.CrossRefPubMedGoogle Scholar
  54. Mikheeva, L.E., Karbysheva, E.A., and Shestakov, S.V., The role of mobile genetic elements in the evolution of cyanobacteria, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 2, pp. 91–101.CrossRefGoogle Scholar
  55. Millard, A., Clokie, M.R.J., Shub, D.A., and Mann, N.H., Genetic organization of the psbAD region in phages infecting marine Synechococcus strains, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 30, pp. 11007–11012.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Millard, A.D., Gierga, G., Clokie, M.R.J., et al., An antisense RNA in a lytic cyanophage links psbA to a gene encoding a homing endonuclease, ISME J., 2010, vol. 4, pp. 1121–1135.CrossRefPubMedGoogle Scholar
  57. Millard, A.D., Zwirglmaier, K., Downey, M.J., et al., Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to hyperplastic region: implication for mechanisms of cyanophage evolution, Environ. Microbiol., 2009, vol. 11, no. 9, pp. 2370–2387.CrossRefPubMedGoogle Scholar
  58. Mühling, M., Fuler, N.J., Millard, A., et al., Genetic diversity of marine Synechococcus and co-occuring cyanophage communities: evidence for viral control of phytoplankton, Environ. Microbiol., 2005, vol. 7, no. 4, pp. 499–508.CrossRefPubMedGoogle Scholar
  59. Nakamura, G., Kimura, S., Sako, Y., and Yoshida, T., Genetic diversity of Microcystis cyanophages in two different freshwater environments, Arch. Microbiol., 2014, vol. 196, pp. 401–409.CrossRefPubMedGoogle Scholar
  60. Nakao, M., Okamoto, S., Kohara, M., et al., CyanoBase: the cyanobacteria genome database update 2010, Nucleic Acid Res., 2010, vol. 38, pp. 379–381.CrossRefGoogle Scholar
  61. Ohki, K. and Fujita, Y., Occurrence of a temperate cyanophage lysogenizing the marine cyanophyte Phormidium persicinum, J. Phycol., 1996, vol. 32, no. 3, pp. 365–370.CrossRefGoogle Scholar
  62. Ortmann, A.C., Lawrence, J.E., and Suttle, C.A., Lysogeny and lytic viral production during a bloom of the cyanobacterium Synechococcus spp., Microb. Ecol., 2002, vol. 43, pp. 225–231.CrossRefPubMedGoogle Scholar
  63. Paul, J.H., Prophages in marine bacteria: dangerous molecular time bombs or the key of survival in the seas, ISME J., 2008, vol. 2, pp. 579–589.CrossRefPubMedGoogle Scholar
  64. Safferman, R.S., Cannon, R.E., Desjardins, P.R., et al., Classification and nomenclature of viruses of cyanobacteria, Intervirology, 1983, vol. 19, pp. 61–66.CrossRefPubMedGoogle Scholar
  65. Safferman, R.S. and Morris, M.E., Algal virus: isolation, Science, 1963, vol. 140, pp. 679–680.CrossRefPubMedGoogle Scholar
  66. Shan, J., Jia, Y., Clokie, M.R.J., and Mann, N.H., Infection by the “photosynthetic” phage S-PM2 induces increased synthesis of phycoerythrin in Synechococcus sp. WH7803, FEMS Microbiol. Lett., 2008, vol. 283, pp. 154–161.CrossRefPubMedGoogle Scholar
  67. Sharon, I., Alperovitch, A., Rohwer, F., et al., Photosystem I gene cassettes are present in marine virus genomes, Nature, 2009, vol. 461, no. 10, pp. 258–262.PubMedCentralCrossRefPubMedGoogle Scholar
  68. Shestakov, S.V., Horizontal transfer of genes in bacteria: process and limitations, Ekol. Genet., 2007, vol. 5, no. 2, pp. 12–24.Google Scholar
  69. Shi, T. and Falkowski, P.G., Genome evolution in cyanobacteria: the stable core and the variable shell, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 7, pp. 2510–2515.PubMedCentralCrossRefPubMedGoogle Scholar
  70. Sode, K., Oozeki, M., Asakawa, K., et al., Isolation of a marine cyanophage infecting the marine unicellular cyanobacterium Synechococcus sp. NKBG 042902, J. Mar. Biotechnol., 1994, vol. 1, pp. 189–192.Google Scholar
  71. Sorec, R., Kunin, V., and Hugenholtz, P., CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archea, Nat. Rev. Microbiol., 2008, vol. 6, pp. 181–186.CrossRefGoogle Scholar
  72. Stern, A. and Sorec, R., The phage-host arms race: shaping the evolution of microbes, Bioessays, 2010, vol. 33, pp. 43–51.CrossRefGoogle Scholar
  73. Stoddard, L.I., Martiny, J.B.H., and Marston, M.F., Selection and characterization of cyanophage resistance in marine Synechococcus strains, Appl. Environ. Microbiol., 2007, vol. 73, no. 17, pp. 5516–5522.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Sullivan, M.B., Coleman, M.L., Weigele, P., et al., Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations, PLoS Biol., 2005, vol. 3, no. 5, pp. 790–806.CrossRefGoogle Scholar
  75. Sullivan, M.B. Huang, K.H., Ignacio-Espinoza, J.C., et al., Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments, Environ. Microbiol., 2010, vol. 12, no. 11, pp. 3035–3056.PubMedCentralCrossRefPubMedGoogle Scholar
  76. Sullivan, M.B., Krastins, B., Hughes, J.L., et al., The genome and structural proteome of an ocean siphoviruses: a new window into the cyanobacterial “mobilome,” Environ. Microbiol., 2009, vol. 11, no. 11, pp. 2935–2951.PubMedCentralCrossRefPubMedGoogle Scholar
  77. Sullivan, M.B., Lindell, D., Lee, J.A., et al., Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts, PLoS Biol., 2006, vol. 4, no. 8, pp. 1344–1357.CrossRefGoogle Scholar
  78. Sullivan, M.B., Waterbury, J.B., and Chisholm, S.W., Cyanophages infecting the oceanic cyanobacterium Prochlorococcus, Nature, 2003, vol. 424, pp. 1047–1051.CrossRefPubMedGoogle Scholar
  79. Suttle, C.A., Marine viruses—major players in the global ecosystem, Nat. Rev. Microbiol., 2007, vol. 5, pp. 801–812.CrossRefPubMedGoogle Scholar
  80. Thompson, L.R., Zeng, Q., Kelly, L., et al., Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 39, pp. E757–E764.PubMedCentralCrossRefPubMedGoogle Scholar
  81. Waterbury, J.B. and Valois, F.W., Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater, Appl. Environ. Microbiol., 1993, vol. 59, pp. 3393–3399.PubMedCentralPubMedGoogle Scholar
  82. Weigele, P.R., Pope, W.H., Pedulla, M.L., et al., Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus, Environ. Microbiol., 2007, vol. 9, no. 7, pp. 1675–1695.CrossRefPubMedGoogle Scholar
  83. Weinbauer, M.G. and Rassoulzadegan, F., Are viruses driving microbial diversification and diversity?, Environ. Microbiol., 2004, vol. 6, no. 1, pp. 1–11.CrossRefPubMedGoogle Scholar
  84. Wilhelm, S.W., Carberry, M.J., Eldridge, M.L., et al., Marine and freshwater cyanophages in a Laurentian Great Lake: evidence from infectivity assays and molecular analysis of g20 genes, Appl. Environ. Microbiol., 2006, vol. 72, no. 7, pp. 4957–4963.PubMedCentralCrossRefPubMedGoogle Scholar
  85. Williamson, S.J., Rush, D.B., Yooseph, S., et al., The Sorcerer II global ocean sampling expedition: metagenomic characterization of viruses within aquatic microbial samples, PLoS One, 2008, vol. 3, no. 1, p. e1456.Google Scholar
  86. Wilson, W.H., Joint, I.R., Carr, N.G, and Mann, N.H., Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. strain WH7803, Appl. Environ. Microbiol., 1993, vol. 59, pp. 3736–3743.PubMedCentralPubMedGoogle Scholar
  87. Xia, H., Li, T., Deng, F., and Hu, Z., Freshwater cyanophages, Virol. Sin., 2013, vol. 28, no. 5, pp. 253–259.CrossRefPubMedGoogle Scholar
  88. Yerrapragada, S., Siefert, J.L., and Fox, G.E., Horizontal gene transfer in cyanobacterial signature genes, Methods Mol. Biol., 2009, vol. 532, pp. 339–366.CrossRefPubMedGoogle Scholar
  89. Yoshida, T., Nagasaki, K., Takashima, Y., et al., MaLMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies, J. Bacteriol., 2008, vol. 190, no. 5, pp. 1762–1772.PubMedCentralCrossRefPubMedGoogle Scholar
  90. Zeidner, G., Bielawski, J., Shmoish, M., et al., Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates, Environ. Microbiol., 2005, vol. 7, no. 10, pp. 1505–1513.CrossRefPubMedGoogle Scholar
  91. Zeng, Q. and Chisholm, S.W., Marine viruses exploit their host’s two-component regulatory system in response to resource limitation, Curr. Biol., 2012, vol. 22, pp. 124–126.CrossRefPubMedGoogle Scholar
  92. Zhaxybaeva, O., Gogarten, P.J., Charlebois, R.L., et al., Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events, Genome Res., 2006, vol. 16, pp. 1099–1108.CrossRefGoogle Scholar
  93. Zheng, Q., Jiao, N., Zhang, R., et al., Prevalence of psbA-containing cyanobacterial podovirus in the ocean, Sci. Rep., 2013. doi: 10.1038/srep03207Google Scholar
  94. Zhong, Y., Chen, F., Wilhelm, S.W., et al., Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20, Appl. Environ. Microbiol., 2002, vol. 68, no. 4, pp. 1576–1584.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations