Biology Bulletin Reviews

, Volume 4, Issue 4, pp 311–322 | Cite as

Plant peroxisomes: The role in metabolism of reactive oxygen species and the processes they mediate

Article
  • 55 Downloads

Abstract

Modern ideas on the biogenesis of plant peroxisomes, their involvement in the production and detoxification of reactive oxygen species, and the role in the processes they mediate are discussed. The data on the proliferation and degradation of these organelles in the cell during the oxidative stress and on their involvement in the generation of signaling molecules are considered.

Keywords

peroxisomes reactive oxygen species antioxidase systems oxidative stress signaling molecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammar, E.D., Rodriguez-Cerezo, E., Shaw, J.G., and Pirone, T.P., Association of virions and coat protein of tobacco vein mottling potyvirus with cylindrical inclusions in tobacco cells, Phytopathology, 1994, vol. 84, pp. 520–524.CrossRefGoogle Scholar
  2. Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant. Biol., 2004, vol. 55, pp. 373–399.PubMedCrossRefGoogle Scholar
  3. Baranenko, V.V., A role of superoxide dismutase in the plant cells, Tsitologiya, 2006, vol. 48, no. 6, pp. 465–474.Google Scholar
  4. Belitser, N.V., Lysosome system and microbodies in the plant and animal cells, Extended Abstract of Doctoral (Biol.) Dissertation, Leningrad, 1978.Google Scholar
  5. Charlton, W.L., Matsui, K., Johnson, B., et al., Saltinduced expression of peroxisome-associated genes requires components of the ethylene, jasmonate and abscisic acid signaling pathways, Plant Cell Environ., 2005, vol. 28, pp. 513–524.CrossRefGoogle Scholar
  6. Corpas, F.J., Barroso, J.B., and del Rio, L.A., Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells, Trends Plant Sci., 2001, vol. 6, pp. 145–150.PubMedCrossRefGoogle Scholar
  7. Corpas, F.J., de la Colina, C., Sanchez-Rasero, F., and del Rio, L.A., A role for leaf peroxisomes in the catabolism of purines, J. Plant Physiol., 1997, vol. 151, pp. 246–250.CrossRefGoogle Scholar
  8. Corpas, F.J., Pedrajas, J.R., Sandalio, L.M., et al., Localization of peroxiredoxin in peroxisomes from pea leaves, Free Radical Res., 2003, suppl. 2, vol. 37, p. 19.CrossRefGoogle Scholar
  9. Corpas, F.J., Sandalio, L.M., Brown, M.J., et al., Identification of porin-like polypeptide(s) in the boundary membrane of oilseed glyoxysomes, Plant Cell Physiol., 2000, vol. 41, pp. 1218–1228.PubMedGoogle Scholar
  10. Corpas, F.J., Palma, J.M., Sandalio, L.M., et al., Peroxisomal xanthine oxidoreductase: Characterization of the enzyme from pea (Pisum sativum L.) leaves, J. Plant Physiol., 2008, vol. 165, pp. 1319–1330.PubMedCrossRefGoogle Scholar
  11. De Duve, C. and Baudhuin, P., Peroxysomes (microbodies and related particles), Physiol. Rev., 1966, vol. 46, pp. 323–357.PubMedGoogle Scholar
  12. Delledonne, M., Xia, Y., Dixon, R.A., and Lamb, C.J., Nitric oxide function as a signal in plant disease resistance, Nature, 1998, vol. 394, pp. 585–588.PubMedCrossRefGoogle Scholar
  13. Delledonne, M., Zeier, J., Marocco, A., and Lamb, C.J., Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 13454–13459.PubMedCentralPubMedCrossRefGoogle Scholar
  14. del Rio, L.A., Corpas, F.J., Sandalio L.M., et al., Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes, J. Exp. Bot., 2002, vol. 53, pp. 1255–1272.PubMedCrossRefGoogle Scholar
  15. del Rio, L.A., Corpas, F.J., Sandalio L.M., et al., Plant peroxisomes, reactive oxygen metabolism and nitrix oxide, IUBMB Life., 2003, vol. 55, pp. 71–81.PubMedCrossRefGoogle Scholar
  16. del Rio, L.A., Pastori, G.M., Palma, J.M., et al., The activated oxygen role of peroxisomes in senescence, Plant Physiol., 1998, vol. 116, pp. 1195–1200.PubMedCentralPubMedCrossRefGoogle Scholar
  17. del Rio, L.A., Sandalio L.M., Corpas, F.J., et al., Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling, Plant Physiol., 2006, vol. 141, pp. 330–335.PubMedCentralPubMedCrossRefGoogle Scholar
  18. del Rio, L.A., Sandalio L.M., Palma, J.M., et al., Metabolism of oxygen radicals in peroxisomes and cellular implications, Free Radical Biol. Med., 1992, vol. 13, pp. 557–580.CrossRefGoogle Scholar
  19. Distefano, S., Palma, J. M, Gomez, M., and del Rio, L.A., Characterization of endoproteases from plant peroxisomes, Biochem. J., 1997, vol. 327, pp. 399–405.PubMedCentralPubMedGoogle Scholar
  20. Distefano, S., Palma, J.M., McCarthy, I., and del Rio, L.A., Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves, Planta, 1999, vol. 209, pp. 308–313.PubMedCrossRefGoogle Scholar
  21. Du, Y.Y., Wang, P.C., Chen, J., and Song, C.P., Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana, J. Integr. Plant Biol., 2008, vol. 50, pp. 1318–1326.PubMedCrossRefGoogle Scholar
  22. Eubel, H., Meyer, E.H., Taylor, N.L., et al., Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes, Plant Physiol., 2008, vol. 148, pp. 1809–1829.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Fan, J., Quan, S., Orth, T., et al., The Arabidopsis PEX12 gene is required for peroxisome biogenesis and is essential for development, Plant Physiol., 2005, vol. 139, pp. 231–239.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gechev, T.S. and Hille, J., Hydrogen peroxide as a signal controlling plant programmed cell death, J. Cell Biol., 2005, vol. 168, pp. 17–20.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Goldfischer, S. and Reddy, J.K., Peroxisomes (microbodies) in cell pathology, Int. Rev. Exp. Pathol., 1984, vol. 26, pp. 45–84.PubMedGoogle Scholar
  26. Grune, T., Reinheckek, T., and Davies, K.J.A., Degradation of oxidized proteins in mammalian cells, FASEB J., 1997, vol. 11, pp. 526–534.PubMedGoogle Scholar
  27. Harper, J.F., Breton, G., and Harmon, A., Decoding Ca2+ signals through plant protein kinases, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 263–288.PubMedCrossRefGoogle Scholar
  28. Hayashi, M. and Nishimura, M., Entering a new era of research on plant peroxisomes, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 577–582.PubMedCrossRefGoogle Scholar
  29. Helm, M., Lück, C., Prestele, J., et al., Dual specificities of the glyoxysomal/peroxisomal processing protease Deg15 in higher plants, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 11501–11506.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Horling, F., Köning, J., and Dietz, K.J., Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins, Plant Physiol. Biochem., 2002, vol. 40, pp. 491–499.Google Scholar
  31. Hruban, Z. and Rechcigl, M., Jr., Microbodies and Related Particles. Morphology, Biochemistry, and Physiology, New York: Academic, 1969.Google Scholar
  32. Hu, J.P., Aguirre, M., Peto, C., et al., A role for peroxisomes in photomorphogenesis and development of Arabidopsis, Science, 2002, vol. 297, pp. 405–409.PubMedCrossRefGoogle Scholar
  33. Igamberdiev, A.U., Role of peroxisomes in the plant metabolism, Soros. Obraz. Zh., 2000, vol. 6, no. 12, pp. 20–26.Google Scholar
  34. Igamberdiev, A.U. and Lea, P.J., The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms, Phytochemistry, 2002, vol. 60, pp. 651–674.PubMedCrossRefGoogle Scholar
  35. Ichimura, K., Shinozaki, K., Tena, G., et al., Mitogenactivated protein kinase cascades in plants: a new nomenclature, Trends Plant Sci., 2002, vol. 7, pp. 301–308.CrossRefGoogle Scholar
  36. Kamigaki, A., Mano, S., Terauchi, K., et al., Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor, Plant J., 2003, vol. 33, pp. 161–175.PubMedCrossRefGoogle Scholar
  37. Khan, B.R. and Zolman, B.K., pex5 mutants that differentially disrupt PTS1 and PTS2 peroxisomal matrix protein import in Arabidopsis, Plant Physiol., 2010, vol. 154, pp. 1602–1615.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Koh, S., Andre, A., Edwards, H., et al., Arabidopsis thaliana subcellular response to compatible Erysiphe cichoracearum infection, Plant J., 2005, vol. 44, pp. 516–529.PubMedCrossRefGoogle Scholar
  39. Kovtun, Y., Chiu, W.L., Tena, G., and Sheen, J., Functional analysis of oxidative stress-activated mitogenactivated protein kinase cascade in plants, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 2940–2945.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kuzniak, E. and Sklodowska, M., Fungal pathogeninduced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants, Planta, 2005, vol. 222, pp. 192–200.PubMedCrossRefGoogle Scholar
  41. Lazarow, P.B., Peroxisome biogenesis: advances and conundrums, Curr. Opin. Cell Biol., 2003, vol. 15, pp. 489–497.PubMedCrossRefGoogle Scholar
  42. Lazarow, P.B. and de Duve, C., A fatty acyl-CoA oxidizing system in rat liver peroxisomes: enhancement by clofibrate, a hypolipidemic drug, Proc. Natl. Acad. Sci. USA, 1976, vol. 73, pp. 2043–2046.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lingard, M.J. and Bartel, B., Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import, Plant Physiol., 2009, vol. 151, pp. 1354–1365.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lipka, V., Dittgen, J., Bednarek, P., et al., Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis, Science, 2005, vol. 310, pp. 1180–1183.PubMedCrossRefGoogle Scholar
  45. Lopez-Huertas, E., Corpas, F.J., Sandalio, L.M., and del Rio, L.A., Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation, Biochem. J., 1999, vol. 337, pp. 531–536.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lopez-Huertas, E., Charlton, W.L., Johnson, B., et al., Stress induces peroxisome biogenesis genes, EMBO J., 2000, vol. 19, pp. 6770–6777.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Mano, S., Nakamori, C., Nito, K., et al., The Arabidopsis pex12 and pex13 mutants are defective in both PTS1- and PTS2-dependent protein transport to peroxisomes, Plant J., 2006, vol. 47, pp. 604–618.PubMedCrossRefGoogle Scholar
  48. McCarthy, I., Romero-Puertas, M.C., Palma, J.M., et al., Cadmium induces senescence symptoms in leaf peroxisomes of pea plants, Plant Cell Environ., 2001, vol. 24, pp. 1065–1073.CrossRefGoogle Scholar
  49. McCarthy-Suárez, I., Gómez, M., del Río, L.A., and Palma, J.M., Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants, Biol. Plantarum., 2011, vol. 55, pp. 485–492.CrossRefGoogle Scholar
  50. Menke, F.L., van Pelt, J.A., Pieterse, C.M., and Klessig, D.F., Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis, Plant Cell, 2004, vol. 16, pp. 897–907.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.PubMedCrossRefGoogle Scholar
  52. Mittova, V., Tal, M., Volokita, M., and Guy, M., Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii, Plant Cell Environ., 2003, vol. 26, pp. 845–856.PubMedCrossRefGoogle Scholar
  53. Mittova, V., Guy, M., Tal, M., and Volokita, M., Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii, J. Exp. Bot., 2004, vol. 55, pp. 1105–1113.PubMedCrossRefGoogle Scholar
  54. Moon, H., Lee, B., Choi, G., et al., NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 358–363.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Mullen, R.T. and Trelease, R.N., The ER-peroxisome connection in plants: development of the “ER semi-autonomous peroxisome maturation and replication” model for plant peroxisome biogenesis, Biochim. Biophys. Acta, 2006, vol. 1763, pp. 1655–1668.PubMedCrossRefGoogle Scholar
  56. Nair, D.M., Purdue, P.E., and Lazarow, P.B., Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae, J. Cell Biol., 2004, vol. 167, pp. 599–604.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Nakagami, H., Kiegerl, S., and Hirt, H., OMTK1, a novel MAPKKK, channel oxidative stress signaling through direct MAPK interaction, J. Biol. Chem., 2004, vol. 279, pp. 26959–26966.PubMedCrossRefGoogle Scholar
  58. Nishimura, M., Hayashi, M., Kato, A., et al., Functional transformation of microbodies in higher plant cells, Cell Struct. Funct., 1996, vol. 21, pp. 387–393.PubMedCrossRefGoogle Scholar
  59. Nito, K., Hayashi, M., and Nishimura, M., Direct interaction and determination of binding domains among peroxisomal import factors in Arabidopsis thaliana, Plant Cell Physiol., 2002, vol. 43, pp. 355–366.PubMedGoogle Scholar
  60. Nyathi, Y. and Baker, A., Plant peroxisomes as a source of signaling molecules, Biochim. Biophys. Acta, 2006, vol. 1763, pp. 1478–1495.PubMedCrossRefGoogle Scholar
  61. Opperdoes, F.R., Glycosomes may provide clues to the import of peroxisomal proteins, Trends Biochem. Sci., 1988, vol. 13, pp. 255–260.PubMedCrossRefGoogle Scholar
  62. Oshima, Y., Kamigaki, A., Nakamori, C., et al., Plant catalase is imported into peroxisomes by pex5p but is distinct from typical PTS1 import, Plant Cell Physiol., 2008, vol. 49, pp. 671–677.PubMedGoogle Scholar
  63. Palma, J.M., Sandalio L.M., Corpas, F.J., et al., Plant proteases, protein degradation, and oxidative stress: role of peroxisomes, Plant Physiol. Biochem., 2002, vol. 40, pp. 521–530.Google Scholar
  64. Palma, J.M., Corpas, F.J., and del Rio, L.A., Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology, Proteomics, 2009, vol. 9, pp. 2301–2312.PubMedCrossRefGoogle Scholar
  65. Pastori, G.M. and del Rio, L.A., An activated-oxygenmediated role for peroxisomes in the mechanism of senescence of pea leaves, Planta, 1994a, vol. 193, pp. 385–391.CrossRefGoogle Scholar
  66. Pastori, G.M. and del Rio, L.A., Activated oxygen species and superoxide dismutase activity in peroxisomes from senescent pea leaves, Proc. R Soc. Edinb. Sect. B Biol., 1994b, vol. 102B, pp. 505–509.Google Scholar
  67. Pastori, G.M. and del Rio, L.A., Natural senescence of pea leaves: an activated oxygen-mediated function for peroxisomes, Plant Physiol., 1997, vol. 113, pp. 411–418.PubMedCentralPubMedGoogle Scholar
  68. Perry, R.J., Mast, F.D., and Rachubinski, R.A., Endoplasmic reticulum-associated secretory proteins Sec20p, Sec39p, and Ds11p are involved in peroxisome biogenesis, Eukaryotic Cell., 2009, vol. 8, pp. 830–843.PubMedCentralPubMedCrossRefGoogle Scholar
  69. Rentel, M.C. and Knight, M.R., Oxidative stress-induced calcium signaling in Arabidopsis, Plant Physiol., 2004, vol. 135, pp. 1471–1479.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Reumann, S., Ma, C., Lemke, S., and Babujee, L., AraPerox: a database of putative Arabidopsis proteins from plant peroxisomes, Plant Physiol., 2004, vol. 136, pp. 2587–2608.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Reumann, S., Babujee, L., Ma, C., et al., Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms, Plant Cell, 2007, vol. 19, pp. 3170–3193.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Reunov, A.V., Cytopathology of the plant cell infected by viruses TMV and PVX and a problem of plant resistance, Extended Abstract of Doctoral (Biol.) Dissertation, Kiev, 1989.Google Scholar
  73. Reunov, A.V., Virusnyi patogenez i zashchitnye mekhanizmy rastenii (Virus Pathogenesis and the Plant Resistance Mechanisms), Vladivostok: Dal’nauka, 1999.Google Scholar
  74. Reunov, A.V., Lapshina, L.A., Nagorskaya, V.P., et al., Ultrastructure of leaf mesophyll cells of various soya cultivars infected by soybean mosaic virus, Tsitologiya, 2006, vol. 48, no. 3, pp. 208–215.Google Scholar
  75. Reunov A.V. and Lega S.N. Ultrastructural study of local lesion and surrounding tissue in Gomphrena globosa L. leaves infected by tobacco mosaic virus, Biol. Bull., 2000, vol. 27, no. 3, pp. 325–328.Google Scholar
  76. Reunov, A.V., Lega, S.N., Nagorskaya, V.P., and Lapshina, L.A., A subset of cells in tobacco mosaic virus (TMV)-induced local lesions in Datura stramonium L. leaves are tolerant to TMV, Cell Tissue Biol., 2011, vol. 5, no. 1, pp. 62–67.CrossRefGoogle Scholar
  77. Reunov, A.V. and Reunov, A.A., Liticheskaya funktsiya kletki (Lytic Function of a Cell), Moscow: Nauka, 2008.Google Scholar
  78. Roberts, I.M., Wang, D., Findlay, K., and Maule, A.J., Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement, Virology, 1998, vol. 245, pp. 173–181.PubMedCrossRefGoogle Scholar
  79. Rodríguez-Serrano, M., Romero-Puertas, M.C., Sparkes, I., et al., Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium, Free Radical Biol. Med., 2009, vol. 47, pp. 1632–1639.CrossRefGoogle Scholar
  80. Romero-Puertas, M.C., McCarthy, I., Sandalio, L.M., et al., Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes, Free Radical Res., 1999, vol. 31, suppl., pp. 25–31.CrossRefGoogle Scholar
  81. Romero-Puertas, M.C., Palma, J.M., Gomez, M., et al., Cadmium causes the oxidative modification of proteins in pea plants, Plant Cell Environ., 2002, vol. 25, pp. 677–686.CrossRefGoogle Scholar
  82. Sandalio, L.M., Dalurzo, H.C., Gomez, M., et al., Cadmium-induced changes in the growth and oxidative metabolism of pea plants, J. Exp. Bot., 2001, vol. 52, pp. 2115–2126.PubMedGoogle Scholar
  83. Schuhmann, H., Huesgen, P.F., Gietl, C., and Adamska, I., The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis, Plant Physiol., 2008, vol. 148, pp. 1847–1856.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Schuhmann, H. and Adamska, I., Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell, Physiol. Plant., 2012, vol. 145, pp. 224–234.PubMedCrossRefGoogle Scholar
  85. Sparkes, I.A., Brandizzi, F., Slocombe, S.P., et al., An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis, Plant Physiol., 2003, vol. 133, pp. 1809–1819.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Strader, L.C., Culler, A.H., Cohen, J.D., and Bartel, B., Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings, Plant Physiol., 2010, vol. 153, pp. 1577–1586.PubMedCentralPubMedCrossRefGoogle Scholar
  87. Tabak, H.F., Murk, J.L., Braakman, I., and Geuze, H.J., Peroxisomes start their life in the endoplasmic reticulum, Traffic, 2003, vol. 4, pp. 512–518.PubMedCrossRefGoogle Scholar
  88. Taylor, N.L., Tan, Y.F., Jacoby, R.P., and Millar, A.H., Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes, J. Proteomics, 2009, vol. 72, pp. 367–378.PubMedCrossRefGoogle Scholar
  89. Tenberge, K.B., Ruholl, C., Heinze, M., and Eising, R., Purification and immuno-electron microscopical characterization of crystalline inclusions from plant peroxisomes, Protoplasma, 1997, vol. 196, pp. 142–154.CrossRefGoogle Scholar
  90. Thoms, S. and Erdmann, R., Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation, FEBS J., 2005, vol. 272, pp. 5169–5181.PubMedCrossRefGoogle Scholar
  91. Titorenko, V.I. and Mullen, R.T., Peroxisome biogenesis: the peroxisomal endomembrane system and the role of the ER, J. Cell Biol., 2006, vol. 174, pp. 11–17.PubMedCentralPubMedCrossRefGoogle Scholar
  92. Wasternack, C. and Kombrink, E., Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development, ACS Chem. Biol., 2010, vol. 5, pp. 63–77.PubMedCrossRefGoogle Scholar
  93. Yanik, T. and Donaldson, R.P., A protective association between catalase and isocitrate lyase in peroxisomes, Arch. Biochem. Biophys., 2005, vol. 435, pp. 243–252.PubMedCrossRefGoogle Scholar
  94. Zolman, B.K., Monroe-Augustin, M., Silva, I.D., and Bartel, B., Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22, Plant Cell, 2005, vol. 17, pp. 3422–3435.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Elyakov Pacific Institute of Bioorganic Chemistry, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations