Biology Bulletin Reviews

, Volume 3, Issue 2, pp 167–175 | Cite as

Activity of digestive hydrolases in fish infected with cestodes



The data on the influence of cestode infection on the activity of digestive enzymes in their host fish are presented. The existence of proteinase and glycosidase activity gradients along fish intestines has been confirmed. Proteinases of hosts as compared to glycosidases were shown to be more responsive of cestode infection. The infection reduced the proteolytic activity in bream and burbot and increased it in pike. Both absolute and relative activity levels of the investigated enzymes changed. In beam, the infection provoked a redistribution of the relative content of various proteinase subclasses, especially in the intestinal segments with the maximal abundance of worms. In the infected burbot, the activity of proteolytic enzymes decreased to a greater extent in the places where worms are attached, i.e., pyloric caeca. A decrease in the activity of digestive enzymes of the hosts was observed even at low intensity of invasion.


fish cestodes digestion enzymes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alarcón F.J., Martínez, T.F., Barranco, P., Cabello, T., Díaz, M., and Moyano, F.J., Digestive Proteases during Development of Larvae of Red Palm Weevil, Rhynchophorus errugineus (Olivier, 1790) (Coleoptera: Curculionidae), Insect Bioch. Mol. Biol., 2002, vol. 32, pp. 265–274.CrossRefGoogle Scholar
  2. Anson, M., The Estimation of Pepsin, Tripsin, Papain and Eathepsin with Hemoglobin, J. Gen. Physiol., 1938, vol. 22, no. 1, pp. 79–83.PubMedCrossRefGoogle Scholar
  3. Béer, S.A., The Role of Parasite Pathogenicity Factor in the of Organic Evolution, in Usp. obshch. parazitol. Trudy Instituta parazitologii (Advances in General Parasitology: Proceedings of the Institute of Parasitology), Moscow: Nauka, 2004, vol. 44, pp. 65–80.Google Scholar
  4. Bosi, G., Shinn, A.P., Giari, L., Simoni, E., Pironi, F., and Dezfuli, B.S., Changes in the Neuromodulators of the Diffuse Endocrine System of the Alimentary Canal of Farmed Rainbow Trout, Oncorhynchus mykiss (Walbaum), Naturally Infected with Eubothrium crassum (Cestoda), J. Fish Diseases, 2005, vol. 28, pp. 703–711.CrossRefGoogle Scholar
  5. Boyce, N.P. and Clarke, W.C., Eubothrium salvelini (Cestoda: Pseudophyllidea) Impairs Seawater Adaptation of Migrant Sockeye Salmon Yearlings (Oncorhynchus nerka) from Babine Lake, British Columbia, Canad. J. Fisher. Aquat. Sci., 1983, vol. 40, pp. 821–824.CrossRefGoogle Scholar
  6. Brand, T., On Biochemistry of Parasites, New York: Academic Press, 1966.Google Scholar
  7. Davydov, O.N. and Kurovskaya, L.Ya., Parazito-khozyainnye otnosheniya pri tsestodozakh ryb (Host-Parasite Relationships in Cestodiases of Fish), Kiev: Naukova dumka, 1991.Google Scholar
  8. Deguara, S., Jauncey, K., and Agius, C., Enzyme Activities and pH Variations in the Digestive Tract of Gilthead Sea Bream, J. Fish Biol., 2003, vol. 62, pp. 1033–1043.CrossRefGoogle Scholar
  9. Dobrovol’skii, A.A., Evlanov, I.A., and Shul’man, S.S., Parasitic Systems: Analysis of the Structure and the Strategies That Determine Their Stability, in Ekologicheskaya parazitologiya (Ecological Parasitology), Petrozavodsk: KNTs RAN, 1994, pp. 5–45.Google Scholar
  10. Filippov, A.A. and Golovanova, I.L., Separate and Joint Effects of Copper and Zinc on the Intestine Carbohydrase Activity in vitro in Freshwater Teleosts, Inland Water Biol., 2010, vol. 3, no. 1, pp. 96–101.CrossRefGoogle Scholar
  11. Golovanova, I.L., Kuz’mina, V.V., Chuiko, G.M., Ushakova, N.V., and Filippov, A.A, Impact of Polychlorinated Biphenyls on the Activity of Intestinal Proteinases and Carbohydrases in Juvenile Roach Rutilus rutilus (L.), Inland Water Biol., 2011, vol. 4, no. 2, pp. 249–255.CrossRefGoogle Scholar
  12. Harpaz, S. and Uni, Z., Activity of Intestinal Mucosal Brush Border Membrane Enzymes in Relation to the Feeding Habits of Three Aquaculture Fish Species, Comp. Biochem. Physiol., 1999, vol. 124 A, pp. 155–160.Google Scholar
  13. Hoffmann, R., Kennedy, C.R., and Meder, J., Effect of Eubothrium salvelini Schrank, 1790 on Arctic Charr, Salvelinus alpines (L.), in an Alpine Lake, J. Fish Diseases, 1986, vol. 9, pp. 153–157.CrossRefGoogle Scholar
  14. Issledovanie pishchevaritel’nogo apparata u cheloveka (obzor sovremennykh metodov) (Study of the Digestive Tract of Humans: Current Methods), Leningrad: Nauka, 1969.Google Scholar
  15. Izvekova, G.I. and Kuperman, B.I., and Kuz’mina, V.V., Digestion and Digestive-Transport Surfaces in Cestodes and Their Fish Hosts, Comp. Biochem. Physiol., 1997, vol. 118A, no. 4, pp. 1165–1171.CrossRefGoogle Scholar
  16. Izvekova, G.I., Hydrolytic Activity of Enzymes Produced by Symbiotic Microflora and Its Role in Digestion Processes of Bream and Its Intestinal Parasite Caryophyllaeus laticeps (Cestoda, Caryophyllidea), Biol. Bull., 2006a, vol. 33, no. 3, pp. 287–292.CrossRefGoogle Scholar
  17. Izvekova, G.I., Nutritional Adaptations in Lower Cestodes—Fish Parasites, Usp. Sovrem. Biol., 2006b, vol. 126, no. 6, pp. 605–617.Google Scholar
  18. Izvekova, G.I., Solovyev, M.M., and Izvekov, E.I., Effect of Caryophyllaeus laticeps (Cestoda, Caryophyllidea) upon Activity of Digestive Enzymes in Bream, Biol. Bull., 2011, vol. 38, no. 1, pp. 50–56.CrossRefGoogle Scholar
  19. Jónás, E., Rágyanszki, M., Oláh, J., and Boross, L., Proteolytic Digestive Enzymes of Carnivorous (Silurus glanis L.), Herbivorous (Hypophthalmichthys molitrix Val.) and Omnivorous (Cyprinus carpio L.) Fishes, Aquaculture, 1983, vol. 30, pp. 145–154.CrossRefGoogle Scholar
  20. Khavinson, V.Kh. and Kvetnaya, T.V., Regulatory Peptides and Homeostasis, Ross. Khim. Zh., 2005, vol. 49, no. 1, pp. 112–117.Google Scholar
  21. Krasnoshchekov, G.P., Parazitarnye sistemy: II. Vosproizvodstvo populyatsii parazita i ikh biotsenologicheskie vzaimodeistviya (Parasitic System. II. Reproduction of a Parasite Population and Their Biocenotic Interactions), Togliatti, 1996.Google Scholar
  22. Krasnoshchekov, G.P., Parasitism: Criteria and Ecological Status, Usp. Sovrem. Biol., 2000, vol. 120, no. 3, pp. 253–264.Google Scholar
  23. Kuperman, B.I., Lentochnye chervi roda Triaenophorus—parazity ryb (Tapeworms of the Genus Triaenophorus—Fish Parasites), Leningrad: Nauka, 1973.Google Scholar
  24. Kuperman, B.I., Biology and the Life Cycle of Eubothrium rugosum (Cestoda: Pseudophyllidea), Probl. Gidroparazitol., 1978, pp. 105–112.Google Scholar
  25. Kuperman, B.I., Funktsional’naya morfologiya nizshikh tsestod (Functional Morphology of Lower Cestodes), Leningrad: Nauka, 1988.Google Scholar
  26. Kurovskaya, L.Ya., Coupling of Digestive Processes in the System Bothriocephalus acheilognathi-Carp, Parazitologiya, 1991, no. 5, pp. 441–449.Google Scholar
  27. Kuz’mina, V.V., Izvekova, G.I., and Kuperman, B.I., Features of Nutritional Physiology of Cestodes and Their Hosts, Fish, Usp. Sovrem. Biol., 2000, vol. 120, no. 4, pp. 384–394.Google Scholar
  28. Kuz’mina, V.V., Fiziologo-biokhimicheskie osnovy ekzotrofii ryb (Physiological and Biochemical Bases of Fish Exotrophy), Moscow: Nauka, 2005.Google Scholar
  29. Kuz’mina, V.V., Zhivaev, N.G., and Botyazhova, O.A., The Biochemical Composition of Chyme in Fish Species with Different Diets, Inland Water Biol., 2008, vol. 1, no. 3, pp. 282–286.CrossRefGoogle Scholar
  30. Lundstedt, L.M., Melo, J.F.B., and Moraes, G., Digestive Enzymes and Metabolic Profile of Pseudoplatystoma orruscans (Teleostei: Siluriformes) in Response to Diet Composition, Comp. Biochem. Physiol., 2004, vol. 137B, pp. 331–339.Google Scholar
  31. Matskási, I., The Effect of Bothriocephalus acheilognati Infection on the Protease and α-Amylase Activity in the Gut of Carp Fry, Sympos. Biol. Hungar., 1984, vol. 23, pp. 119–125.Google Scholar
  32. Mayberry, L.F., Bristol, J.R., Cajas, O., and Tellez, G., Small Intestinal Sucrase Activity during Experimental Infectious with Nippostrongylus brasiliensis and/or Eimeria nieschulzi in Rats, Zeitschrift fur Parasitenkunde, 1986, vol. 72, no. 4, pp. 561–564.PubMedCrossRefGoogle Scholar
  33. Mead, R.W., Histochemical Study on the Distribution of Amylase Activity within the Intestine of the Rat and the Effect of Cestode (Hymenolepis diminuta) Infection, Transact. Amer. Microscop. Soc., 1976, vol. 95, pp. 183–188.CrossRefGoogle Scholar
  34. Mead, R.W. and Roberts, L.S., Intestinal Digestion and Absorption of Starch in the Intact Rat: Effects of Cestode (Hymenolepis diminuta) Infection, Comp. Biochem. Physiol., 1972, vol. 41A, pp. 749–760.CrossRefGoogle Scholar
  35. Mettrick, D.F., Hymenolepis diminuta: The Microbiota, Nutritional and Physico-Chemical Gradients in the Small Intestine of Uninfected and Parasitized Rats, Canad. J. Physiol. Pharmacol., 1971, vol. 49, pp. 972–984.CrossRefGoogle Scholar
  36. Mettrick, D.F. and Podesta, R.B., Ecological and Physiological Aspects of Helminth-Host Interactions in the Mammalian Gastrointestinal Canal, in Advances in Parasitology, London: Academic Press, 1974, vol. 12, pp. 183–279.PubMedCrossRefGoogle Scholar
  37. Mitchell, C.G., Eubothrium, Aquaculture Information Series, 1993, no. 14, pp. 1–4.Google Scholar
  38. Nomenklatura fermentov (Enzyme Nomenclature), Braunshtein, A.E., Ed., Moscow: VINITI, 1979.Google Scholar
  39. Oksov, I.V., Parazitologiya, 1991, vol. 25, no. 1, p. 32.Google Scholar
  40. Pappas, P.W. and Read, C.P., Trypsin Inactivation by Intact Hymenolepis diminuta, J. Parasitol., 1972, vol. 58, pp. 864–871.CrossRefGoogle Scholar
  41. Pappas, P.W., Tryptic and Protease Activities in the Normal and Hymenolepis diminuta-Infected Rat Small Intestine, J. Parasitol., 1978, vol. 64, pp. 562–564.PubMedCrossRefGoogle Scholar
  42. Pappas, P.W. and Uglem, G.L., Hymenolepis diminuta (Cestoda) Liberates an Inhibitor of Proteolytic Enzymes during in vitro Incubation, Parasitology, 1990, vol. 101, no. 3, pp. 455–464.PubMedCrossRefGoogle Scholar
  43. Pronina, S.V. and Pronin, N.M., Vzaimootnosheniya v sistemakh gel’minty-ryby (na tkanevom, organnom i organizmennom urovnyakh) (Relationships in the Worms-Fish Systems (at the Tissue, Organ, and Organismal Levels)), Moscow: Nauka, 1988.Google Scholar
  44. Protasova, E.N., Kuperman, B.I., Roitman, V.A., and Poddubnaya, L.G., Kariofillidy fauny SSSR (Caryophyllidae of the Fauna of the USSR), Moscow: Nauka, 1990.Google Scholar
  45. Saksvik, M., Nilsen, F., Nylund, A., and Berland, B., Effect of Marine Eubothrium sp. (Cestoda: Pseudophyllidea) on the Growth of Atlantic Salmon, Salmo salar L., J. Fish Diseases, 2001, vol. 24, pp. 111–119.CrossRefGoogle Scholar
  46. Sklan, D., Prag, T., and Lupatsch, I., Structure and Function of the Small Intestine of the Tilapia Oreochromis niloticus × Oreochromis aureus (Teleostei, Cichlidae), Aquaculture Research, 2004, vol. 35, pp. 350–357.CrossRefGoogle Scholar
  47. Soprunov, F.F., Molekulyarnye osnovy parazitizma (Molecular Basics of Parasitism), Moscow: Nauka, 1987.Google Scholar
  48. Tengjaroenkul, B., Smith, B.J., Caceci, T., and Smith, S.A., Distribution of Intestinal Enzyme Activities along the Intestinal Tract of Cultured Nile Tilapia, Oreochromis niloticus L., Aquaculture, 2000, vol. 182, pp. 317–327.CrossRefGoogle Scholar
  49. Ugolev, A.M., Membrannoe pishchevarenie. Polisubstratnye protsessy, organizatsiya i regulyatsiya (Membrane Digestion. Polysubstrate Processes, Organization, and Regulation), Leningrad: Nauka, 1972.Google Scholar
  50. Ugolev, A.M. and Kuz’mina, V.V., Pishchevaritel’nye protsessy i adaptatsii u ryb (Digestive Processes and Adaptation in Fish), St. Petersburg: Gidrometeoizdat, 1993.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorok, Yaroslavl oblastRussia
  2. 2.Institute of Animal Systematics and Ecology, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations