Biology Bulletin Reviews

, 1:407 | Cite as

Analysis of cyclic fluctuations in larch bud moth populations with discrete-time dynamic models

Article

Abstract

Data on the population dynamics of the larch bud moth (Zeiraphera diniana Gn.) in the Swiss Alps are analyzed. The analysis is performed with mathematical models of isolated population dynamics in discrete time (such as the Kostitzin model, Skellam model, discrete logistic model, and others), which include minimum unknown parameters. For all analyzed models, the parameters were estimated using data of the Global Population Dynamics Database (nos. 1407 and 6195) by the method of least squares, and sequences of residuals of empirical data and values predicted by model trajectories were analyzed. It is shown that the best approximations are achieved with the Moran-Ricker model and the discrete logistic model. Statistical tests (Kolmogorov-Smirnov, Shapiro-Wilk) show that normal distribution hypotheses of residuals of empirical data and model trajectories for one of the time series (no. 1407) must be rejected; some models display serial correlations in sequences of residuals (according to the Durbin-Watson test). This leads to the conclusion that periodic changes in the larch bud moth population size (no. 1407) can hardly be explained by intrapopulation regulation mechanisms alone. For the other time series (no. 6195), the modified discrete logistic model is shown to be appropriate for explaining population dynamics.

Keywords

Model Trajectory Biology Bulletin Review Population Cycle Cyclic Fluctuation Watson Test 

References

  1. 1.
    Bazykin, A.D., Matematicheskaya biofizika vzaimodeistvuyushchikh populyatsii (Mathematical Biophysics of Interacting Populations), Moscow: Nauka, 1985.Google Scholar
  2. 2.
    Bol’shev, L.N. and Smirnov, N.V., Tablitsy matematicheskoy statistiki (Tables of Mathematical Statistics), Moscow: Nauka, 1983.Google Scholar
  3. 3.
    Varley, D.K., Gradwell, D.R., and Hassell, M.P., Ekologiya populyatsii nasekomykh (Ecology of Insect Populations), Moscow: Kolos, 1978.Google Scholar
  4. 4.
    Draper, N. and Smith, G., Prikladnoi regressionnyi analiz (Applied Regression Analysis), Moscow: Finansy i statistika, 1986.Google Scholar
  5. 5.
    Draper, N.R. and Smith, H., Applied Regression Analysis, New York: Wiley, 1967.Google Scholar
  6. 6.
    Isaev, A.S., Khlebopros, R.G., Nedorezov, L.V., et al., Dinamika chislennosti lesnykh nasekomykh (Population Dynamics of Forest Insects), Novosibirsk: Nauka, 1984.Google Scholar
  7. 7.
    Isaev, A.S., Khlebopros, R.G., Nedorezov, L.V., et al., Populyatsionnaya dinamika lesnykh nasekomykh (Population Dynamics of Forest Insects), Moscow: Nauka, 2001.Google Scholar
  8. 8.
    Maynard Smith, J., Matematicheskie idei v biologii (Mathematical Ideas in Biology), Moscow: Mir, 1970.Google Scholar
  9. 9.
    Maynard Smith, J., Applied Infrared Spectroscopy, New York: Wiley, 1979.Google Scholar
  10. 10.
    Nedorezov, L.V., Modelirovanie massovykh razmnozhenii lesnykh nasekomykh (Modeling of Forest Insects Outbreaks), Novosibirsk: Nauka, 1986.Google Scholar
  11. 11.
    Nedorezov, L.V., Influence of Food Plant Quality and Parasitism on the Cyclic Fluctuations of Larch Bud Moth, Evroaz. Entomol. Zh., 2007, vol. 6, pp. 229–244.Google Scholar
  12. 12.
    Nedorezov, L.V. and Sadykova, D.L., The Problem of Selecting a Mathematical Model of Population Dynamics (for Example, Green Oak Leaf Roller, Evroaz. Entomol. Zh., 2005, vol. 4, pp. 263–272.Google Scholar
  13. 13.
    Nedorezov, L.V., Sadykov, A.M., and Sadykova, D.L., Dynamics of the Number of Green Oak Leaf Roller: the Application of Discrete-Continuous Models with Density-Dependent Nonmonotonic Emergence, Zh. Obshch. Biol., 2010, vol. 71, no. 1, pp. 41–51.PubMedGoogle Scholar
  14. 14.
    Svirezhev, Yu.M. and Logofet, D.O., Ustoichivost’ biologicheskikh soobshchestv (Stability of Biological Communities), Moscow: Nauka, 1978.Google Scholar
  15. 15.
    Andersen, R.M. and May, R.M., Infectious Diseases and Population Cycles of Forest Insects, Science, 1980, vol. 210, pp. 658–661.CrossRefGoogle Scholar
  16. 16.
    Auer, C., Dynamik von Larchenwicklerpopulationen Langs des Alpenbogens, in Mitteilungen der Eidgenossischen Anstalt fiir forstliches Versuchswesen, 1977, vol. 53, pp. 71–105.Google Scholar
  17. 17.
    Baltensweiler, W. and Fischlin, A., The Larch Budmoth in the Alps, in Dynamics of Forest Insect Populations: Patterns, Causes, Implications, Berryman, A.A., Ed., N.Y.: Plenum Press., 331–351.Google Scholar
  18. 18.
    Bellows, T.S., Jr., The Descriptive Properties of Some Models for Density Dependence, Okeanologiya, 1981, vol. 50, pp. 139–156.Google Scholar
  19. 19.
    Berryman, A.A., Population Theory: An Essential Ingredient in Pest Prediction, Management and Policy Making, Am. Entomol., 1991, vol. 37, pp. 138–142.Google Scholar
  20. 20.
    Berryman, A.A., On Choosing Models for Describing and Analyzing Ecological Time Series, Ecology, 1992, vol. 73, pp. 694–698.CrossRefGoogle Scholar
  21. 21.
    Berryman, A.A., Population Cycles: A Critique of Maternal Effects and Allometric Hypotheses, Okeanologiya, 1995, vol. 64, pp. 290–293.Google Scholar
  22. 22.
    Berryman, A.A., What Causes Population Cycles of Forest Lepidoptera?, TREE, 1996, vol. 11, pp. 28–32.PubMedGoogle Scholar
  23. 23.
    Berryman, A.A. and Munster-Swendsen, M., Simple Theoretical Models and Population Predictions, in Predictability and Nonlinear Modeling in Natural Sciences and Economics, Grasman, J. and Straten, G.N.Y., Eds., New York: Kluwer Acad. Publ., 1994, pp. 67–71.Google Scholar
  24. 24.
    Berryman, A.A. and Turchin, P., Identifying the Density-Dependent Structure Underlying Ecological Time Series, Oikos, 2001, vol. 92, pp. 265–270.CrossRefGoogle Scholar
  25. 25.
    Beverton, R.J. and Holt, S.J., On the Dynamics of the Exploited Fish Populations, Great Brit. Min. Agr. Fish, Food, Fish. Invest., 1957, Ser. 2–19, pp. 1–533.Google Scholar
  26. 26.
    Dellucchi, V., Parasitoids and Hyperparasitoids of Zeiraphera Diniana (Lepidoptera tortricidae) and Their Role in Population Control in Outbreak Areas, Entomophaga, 1982, vol. 27, pp. 77–92.CrossRefGoogle Scholar
  27. 27.
    Edelstein-Keshet, L. and Rausher, M.D., The Effects of Inducible Plant Defenses on Herbivore Populations. 1. Mobile Herbivores in Continuous Time, Am. Natur., 1989, vol. 133, pp. 787–810.CrossRefGoogle Scholar
  28. 28.
    Fischlin, A. and Baltensweiler, W., Systems Analysis of the Larch Bud Moth System. Part 1: The Larch-Larch Bud Moth Relationship, Bulletin de la Societe Entomologique Suisse, 1979, vol. 52, pp. 273–289.Google Scholar
  29. 29.
    Ginzburg, L.R. and Taneyhill, D.E., Population Cycles of Forest Lepidoptera: A Maternal Effect Hypothesis, Okeanologiya, 1994, vol. 63, pp. 79–92.Google Scholar
  30. 30.
    Hassell, M.P., Density-Dependence in Single-Species Populations, Okeanologiya, 1975, vol. 44, pp. 283–295.Google Scholar
  31. 31.
    Hilborn, R. and Mangel, M., The Ecological Detective, Princeton, New Jersey: Princeton Univ. Press, 1997.Google Scholar
  32. 32.
    Hunter, M.D. and Price, P.W., Cycles in Insect Populations: Delayed Density Dependence or Exogenous Driving Variables?, Ecol. Entomol., 1998, vol. 23, pp. 216–222.CrossRefGoogle Scholar
  33. 33.
    Kendall, B.E., Briggs, C.J., Murdoch, W.W., Turchin, P.., Ellner, S.P.., McCauley, E., Nisbet, R.M., and Wood, S.N., Why Do Population Cycle? A Synthesis of Statistical and Mechanistic Modeling Approaches, Ecology, 1999, vol. 80, pp. 1789–1805.CrossRefGoogle Scholar
  34. 34.
    Kostitzin, V.A., La Biologie Mathematique, Paris: A. Colin, 1937.Google Scholar
  35. 35.
    May, R.M., Biological Populations Obeying Difference Equations: Stable Points, Stable Cycles and Chaos, J. Theor. Biol., 1975, vol. 51, no. 2, pp. 511–524.PubMedCrossRefGoogle Scholar
  36. 36.
    Maynard, SmithJ. and Slatkin, M., The Stability of Predator-Prey Systems, Ecology, 1973, vol. 54, pp. 384–391.CrossRefGoogle Scholar
  37. 37.
    Moran, P.A.P., Some Remarks on Animal Population Dynamics, Biometrics, 1950, vol. 6, no. 3, pp. 250–258.PubMedCrossRefGoogle Scholar
  38. 38.
    Morris, R.F., Single-Factor Analysis in Population Dynamics, Ecology, 1959, vol. 40, pp. 580–588.CrossRefGoogle Scholar
  39. 39.
    Nedorezov, L.V., Escape-Effect and Population Outbreaks, Ecol. Model., 1997, vol. 94, pp. 95–110.CrossRefGoogle Scholar
  40. 40.
    Nedorezov, L.V., Lohr, B.L., and Sadykova, D.L., Assessing the Importance of Self-Regulating Mechanisms in Diamondback Moth Population Dynamics: Application of Discrete Mathematical Models, J. Theor. Biol., 2008, vol. 254, pp. 587–593.PubMedCrossRefGoogle Scholar
  41. 41.
    NERC Centre for Population Biology The Global Population Dynamics Database, 1999. http://www3.imperial.ac.uk/cpb/research/patternsandprocesses/gpdd
  42. 42.
    Ricker, W.E., Stock and Recruitment, J. Fish. Res. Board Canada, 1954, vol. 11, no. 5, pp. 559–623.CrossRefGoogle Scholar
  43. 43.
    Royama, T., Fundamental Concepts and Methodology for the Analysis of Animal Population Dynamics, with Particular Reference to Univoltine Species, Ecol. Monogr., 1981, vol. 51, pp. 473–493.CrossRefGoogle Scholar
  44. 44.
    Shapiro, S.S., Wilk, M.B., and Chen, H.J., A Comparative Study of Various Tests of Normality, J. Amer. Stat. Assoc., 1968, vol. 63, pp. 1343–1372.CrossRefGoogle Scholar
  45. 45.
    Skellam, J.G., Random Dispersal in Theoretical Populations, Biometrika, 1951, vol. 38, pp. 196–218.PubMedGoogle Scholar
  46. 46.
    Tonnang, H., Nedorezov, L.V., Owino, J., Ochanda, H., and Lohr, B., Evaluation of Discrete Host-Parasitoid Models for Diamondback Moth and Diadegma semiclausum Field Time Population Density Series, Ecol. Model., 2009a, vol. 220, pp. 1735–1744.CrossRefGoogle Scholar
  47. 47.
    Tonnang, H., Nedorezov, L.V., Ochanda, H., Owino, J., and Lohr, B., Assessing the Impact of Biological Control of Plutella xylostella through the Application of Lotka-Volterra Model, Ecol. Model., 2009b, vol. 220, pp. 60–70.CrossRefGoogle Scholar
  48. 48.
    Turchin, P., Rarity of Density Dependence or Population Regulation with Lags?, Nature, 1990, vol. 344, pp. 660–663.CrossRefGoogle Scholar
  49. 49.
    Turchin, P., Complex Population Dynamics: A Theoretical/Empirical Synthesis, Princeton: Princeton Univ. Press, 2003.Google Scholar
  50. 50.
    Turchin, P.., Wood, S.N., Ellner, S.P., Kendall, B.E., Murdoch, W.W., Fischlin, A., Casas, J., McCauley, E., and Briggs, C.J., Dynamical Effects of Plant Quality and Parasitism on Population Cycles of Larch Budmoth, Ecology, 2003, vol. 84, no. 5, pp. 1207–1214.CrossRefGoogle Scholar
  51. 51.
    Varley, G.C. and Gradwell, G.R., Key Factors in Population Studies, Okeanologiya, 1960, vol. 29, pp. 399–401.Google Scholar
  52. 52.
    Varley, G.C. and Gradwell, G.R., Recent Advances in Insect Population Dynamics, Ann. Rev. Ent., 1970, vol. 15, pp. 1–24.CrossRefGoogle Scholar
  53. 53.
    Wood, S.N., Minimizing Model Fitting Objectives That Contain Spurious Local Minima by Bootstrap Restarting, Biometrics, 2001a, vol. 57, pp. 240–244.PubMedCrossRefGoogle Scholar
  54. 54.
    Wood, S.N., Partially Specified Ecological Models, Ecol. Monogr., 2001b, vol. 71, pp. 1–25.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.The Research Center for Interdisciplinary Environmental Cooperation (INENCO) of Russian Academy of SciencesSt. PeterburgRussia

Personalised recommendations