Advertisement

Biology Bulletin Reviews

, Volume 1, Issue 1, pp 26–46 | Cite as

Estimation of heritability and repeatability of resting metabolic rate in birds by the example of free-living pied flycatchers Ficedula hypoleuca (Aves: Passeriformes)

  • A. V. Bushuev
  • A. B. Kerimov
  • E. V. Ivankina
Article

Abstract

Repeatability of a trait estimated over long time intervals and its heritability make it possible to assess whether it can serve as an individual characteristic and be subject to selection. Heritability and repeatability of energetic traits are still poorly studied in birds. The most important physiological characteristic of the homoiotherms is the minimal level of energy expenditure, referred to as the resting metabolic rate (RMR), which, in the absence of the expenditure for biomass growth, does not exceed the basal metabolic rate (BMR). We have estimated the BMR repeatability in adult free-living pied flycatchers in Moscow-region (55°44′ N, 36°51′ E; 1992–2008) and Tomsk (56°20′ N, 84°56′ E; 2008–2009) populations over intervals of 40 days to 3 years. In the Moscow-region pied flycatcher population, the BMR repeatability recorded during the same period of the reproductive season was τ = 0.34 ± 0.10 for a 1-year interval (n = 80), τ = 0.60 ± 0.15 for a 2-year interval (n = 19), and τ = 0.85 ± 0.13 for a 3-year interval (n = 6). In the Tomsk population, the BMR repeatability for the 1-year interval was τ = 0.49 ± 0.11 (n = 50). The repeatability of a trait is a measure of its constancy in time and specifies the upper limit of its heritability. RMR heritability was assessed in cross-fostering experiments in the Moscow-region free-living pied flycatcher population in 2003–2005. The RMRs of chicks and BMRs of their biological fathers displayed a positive correlation, whereas no correlation was found between the RMRs of chicks and their foster fathers. The RMR heritability value was h 2 = 0.43 ± 0.17 (n = 210). The obtained estimates for repeatability and heritability of fundamental energetic traits in pied fly-catcher are rather high for a physiological trait and suggest the existence of evolutionary stable diversity of the avian population in the BMR.

Keywords

Basal Meet Abolic Rate Rest Metabolic Rate Biology Bulletin Review Tarsus Length Pied Flycatcher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adaptive Genetic Variation in the Wild, Mousseau, T.A., Sinervo, B., and Endler, J., Eds., N. Y.: Oxford Univ. Press, 2000.Google Scholar
  2. Alatalo, R.V. and Lundberg, A., Heritability and Selection on Tarsus Length in the Pied Flycatcher (Ficedula hypoleuca), Evolution, 1986, vol. 40, pp. 574–583.CrossRefGoogle Scholar
  3. Alatalo, R.V., Gustafsson, L., and Lundberg, A., High Frequency of Cuckoldry in Pied and Collared Flycatchers, Oikos, 1984, vol. 42, no. 1, pp. 41–47.CrossRefGoogle Scholar
  4. Alatalo, R.V., Gustafsson, L., and Lundberg, A., Extra-Pair Paternity and Heritability Estimates of Tarsus Length in Pied and Collared Flycatchers, Oikos, 1989, vol. 56, pp. 54–58.CrossRefGoogle Scholar
  5. Amundsen, T. and Stokland, J.N., Egg Size and Parental Quality Influence Nestling Growth in the Shag, Auk, 1990, vol. 107, pp. 410–413.Google Scholar
  6. Artacho, P., Castaneda, L.E., and Nespolo, R.F., The Role of Quantitative Genetic Studies in Animal Physiological Ecology, Rev. Chil. Hist. Nat., 2005, vol. 78, pp. 161–167.CrossRefGoogle Scholar
  7. Ashby, P.D., Conservation of Mass-Specific Metabolic Rate among High- and Low-Elevation Populations of the Acridid Grasshopper Xanthippus corallipes, Physiol. Biochem. Zool., 1997, vol. 70, pp. 701–711.Google Scholar
  8. Avian Growth and Development, Starck, J.M. and Ricklefs, R.E., Eds., N.Y.: Oxford Univ. Press, 1998.Google Scholar
  9. Bacigalupe, L.D., Nespolo, R.F., Bustamante, D.M., and Bozinovic, F., The Quantitative Genetics of Sustained Energy Budget in a Wild Mouse, Evolution, 2004, vol. 58, pp. 421–429.PubMedGoogle Scholar
  10. Barton, N.H. and Keightley, P.D., Understanding Quantitative Genetic Variation, Nat. Rev. Genet., 2002, vol. 3, pp. 11–21.PubMedCrossRefGoogle Scholar
  11. Barton, N.H. and Turelli, M., Evolutionary Quantitative Genetics: How Little Do We Know? Annu. Rev. Genet., 1989, vol. 23, pp. 337–370.PubMedGoogle Scholar
  12. Bech, C., Langseth, L., and Gabrielsen, G.W., Repeatability of Basal Metabolism in Rissa tridactyla, Proc. Royal Soc. London, Ser. B, 1999, vol. 266, pp. 2161–2167.CrossRefGoogle Scholar
  13. Becker, W.A., Manual of Quantitative Genetics, Pullman, WA: Acad. Enterprises, 1992.Google Scholar
  14. Bennett, A.F. and Ruben, J.A., Endothermy and Activity in Vertebrates, Science, 1992, vol. 206, pp. 649–654.CrossRefGoogle Scholar
  15. Berteaux, D., Thomas, D.W., Bergeron, J.M., and Lapierre, H., Repeatability of Daily Field Metabolic Rate in Female Meadow Voles (Microtus pennsylvanicus), Funct. Ecol., 1996, vol. 10, pp. 751–759.CrossRefGoogle Scholar
  16. Blackmer, A.L., Mauck, R.A., Ackerman, J.T., Huntington, C.E., Nevitt, G.A., and Williams, J.B., Exploring Individual Quality: Basal Metabolic Rate and Reproductive Performance in Storm-Petrels, Behav. Ecol., 2005, vol. 16, no. 5, pp. 906–913.CrossRefGoogle Scholar
  17. Blanckenhorn, W.U., The Consistency of Quantitative Genetic Estimates in Field and Laboratory in Yellow Dung Fly, Genetica, 2002, vol. 114, pp. 171–182.PubMedCrossRefGoogle Scholar
  18. Bogardus, C., Lillioja, E., Ravussin, E., Abbott, W., Zawadzki, J.K., Young, A., Knowler, W.C., Jacobowitz, R., and Moll, P., Familial Dependence of the Resting Metabolic Rate, New England J. Med., 1986, vol. 315, pp. 96–100.CrossRefGoogle Scholar
  19. Bouchard, C., Tremblay, A., Nadeau, A., Després, J.P., Thériault, G., Boulay, M.R., Lortie, G., Leblanc, C., and Fournier, G., Genetic Effect in Resting and Exercise Metabolic Rates, Metabolism, 1989, vol. 38, pp. 364–370.PubMedCrossRefGoogle Scholar
  20. Bouchard, C., Warwick, D.E., Rice, T., Pérusse, L., Gagnon, J., Province, M.A., Leon, A.S., Rao, D.C., Skinner, J.S., and Wilmore, J.H., Familial Resemblance for VO2max in the Sedentary State: the HERITAGE Family Study, Med. Sci. Sports Exerc., 1998, vol. 30, pp. 252–258.PubMedGoogle Scholar
  21. Bouchard, C., An, P., Rice, T., Skinner, J.S., Wilmore, J.H., Gagnon, J., Pérusse, L., Leon, A.S., and Rao, D.C., Familial Aggregation of VO2max Response to Exercise Training: Results from the HERITAGE Family Study, J. Appl. Physiol., 1999, vol. 87, no. 3, pp. 1003–1008.PubMedGoogle Scholar
  22. Bozinovic, F., Long-term Repeatability of Body Mass and Body Temperature (but not of Basal Metabolism) in Free Ranging Leaf-Eared Mouse, Evol. Ecol. Res., 2007, vol. 9, no. 3, pp. 547–554.Google Scholar
  23. Broggi, J., Patterns of Variation in Energy Management in Wintering Tits (Paridae), Acta Universitatis Ouluensis, Doctoral Thesis, Oulu: Univ. Oulu, 2006.Google Scholar
  24. Broggi, J., Hohtola, E., Koivula, K., Orell, A., Thomson, R.L., and Nilsson, J.-A., Sources of Variation in Winter Basal Metabolic Rate in the Great Tit, Funct. Ecol., 2007, vol. 21, pp. 528–533.CrossRefGoogle Scholar
  25. Bushuev, A.V., The Factors of Variation of the Resting Metabolic Rate in Pied Flycatcher (Ficedula hypoleuca) Chicks, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State Univ., 2009.Google Scholar
  26. Bushuev, A.V., Ivankina E.V., and Kerimov A.B., Factors Influencing Resting Metabolic Rate of Pied Flycatcher Fledglings (Ficedula hypoleuca Pallas), Vogelwarte, 2003, vol. 42, no. 1–2. p. 124.Google Scholar
  27. Bushuev, A.V., Ivankina E.V., and Kerimov A.B., Similarity between Resting Metabolic Rates of Parents and Offspring in Pied Flycatcher (Ficedula hypoleuca): Heritable or Environmental Variation?, Alauda, 2005, vol. 73, no. 3, pp. 226–227.Google Scholar
  28. Bushuev, A.V., Ivankina E.V., and Kerimov A.B., Repeatability of Basal Metabolic Rate in Pied Flycatcher (Ficedula hypoleuca), Proc. 7th Conf. of the European Ornithologists Union. Zurich, Switzerland, August 21–26, 2009, Sempach: Swiss Ornithological Institute, 2009, p. 104.Google Scholar
  29. Cadée, N., Genetic and Environmental Effects on Morphology and Fluctuating Asymmetry in Nestling Barn Swallows, J. Evol. Biol., 2000, vol. 13, pp. 359–370.CrossRefGoogle Scholar
  30. Chappell, M.A. and Rogowitz, G.L., Mass, Temperature and Metabolic Effects on Discontinuous Gas Exchange Cycles in Eucalyptus-Boring Beetles (Coleoptera: Creambycidae), Exp. Biol., 2000, vol. 203, pp. 3809–3820.Google Scholar
  31. Chappell, M.A., Bachman, G.C., and Odell, J.P., Repeatability of Maximal Aerobic Performance in Belding’s Ground Squirrels, Spermophilus beldingi, Funct. Ecol., 1995, vol. 9, pp. 498–504.CrossRefGoogle Scholar
  32. Chappell, M.A., Zuk, M., and Johnsen, T.S., Repeatability of Aerobic Performance in Red Junglefowl: Effects of Ontogeny and Nematode Infection, Funct. Ecol., 1996, vol. 10, pp. 578–585.CrossRefGoogle Scholar
  33. Chappell, M.A., Garland, T., Rezende, E.L., and Gomes, F.R., Voluntary Running in Deer Mice: Speed, Distance, Energy Costs and Temperature Effects, J. Exp. Biol., 2004, vol. 207, pp. 3839–3854.PubMedCrossRefGoogle Scholar
  34. Chappell, M.A., Russell, G.A., and Hammond, K.A., BMR is Not Repeatable over Extended Periods in Deer Mice, Integr. Compar. Biol., 2005, vol. 45, p. 976.Google Scholar
  35. Charmantier, A., Kruuk, L.E.B., and Lambrechts, M.M., Parasitism Reduces the Potential for Evolution in a Wild Bird Population, Evolution, 2004, vol. 58, pp. 203–206.PubMedGoogle Scholar
  36. Croxall, J.P., Rothery, P., and Crisp, A., The Effect of Maternal Age and Experience on Egg-Size and Hatching Success in Wandering Albatrosses Diomedea exulans, Ibis, 1992, vol. 134, pp. 219–228.CrossRefGoogle Scholar
  37. Curtsinger, J.W. and Laurie-Ahlberg, C.C., Genetic Variability of Flight Metabolism in Drosophila melanogaster. I. Characterization of Power Output during Tethered Flight, Genetics, 1981, vol. 98, pp. 549–564.PubMedGoogle Scholar
  38. Damme, K., Pirchner, F., Willeke, H., and Eichinger, H., Fasting Metabolic Rate in Hens. 2. Strain Differences and Heritability Estimates, Poultry Science, 1986, vol. 65, no. 4, pp. 616–620.PubMedGoogle Scholar
  39. Dohm, M.R., Hayes, J.P., and Garland, T., Jr., The Quantitative Genetics of Maximal and Basal Rates of Oxygen Consumption in Mice, Genetics, 2001, vol. 159, pp. 267–277.PubMedGoogle Scholar
  40. Dol’nik, V.R., Resursy energii i vremeni u ptits v prirode (Energy and Time Resources of Birds in Nature), Proceedings of Zoological Institute, (St. Petersburg), vol. 179, St. Petersburg: Nauka, 1995.Google Scholar
  41. Draper, N. and Smith, H., Applied Regression Analysis. Multiple Regression, Moscow: Dialektika, 2007.Google Scholar
  42. Drent, R.H., Klaassen, M., and Zwaan, B., Predictive Growth Budgets in Terns and Gulls, Ardea, 1992, vol. 80, pp. 5–17.Google Scholar
  43. Drost, R., Über das Brutkleid männlicher Trauerfliegen-fänger, Muscicapa hypoleuca, Vogelzug, 1936, vol. 6, pp. 179–186.Google Scholar
  44. Duarte, L.C. and Speakman, J.R., Repeatability of RMR in MF1 Mice, Comp. Biochem. Physiol., 2007, vol. 148,part A, pp. 21–22.Google Scholar
  45. Falconer, D.S. and Mackay, T.F.S., Introduction to Quantitative Genetics, Edinburgh Gate, Harlow Essex, England: Longman Group Ltd., 1997.Google Scholar
  46. Fontaine, E., Savard, R., Tremblay, A., Després, J.P., Poehlman, E.T., and Bouchard, C., Resting Metabolic Rate in Monozygotic and Dizygotic Twins, Acta Geneticae Medicae Gemellologiae, 1985, vol. 34, pp. 41–47.Google Scholar
  47. Fournier, F. and Thomas, D.W., Thermoregulation and Repeatability of Oxygen-Consumption Measurements in Winter-Acclimatized North American Porcupines (Erethizon dorsatum), Can. J. Zool., 1999, vol. 77, pp. 194–202.CrossRefGoogle Scholar
  48. Friedman, W.A., Garland, T., and Dohm, M.R., Individual Variation in Locomotor Behavior and Maximal Oxygen Consumption in Mice, Physiol. Behav., 1992, vol. 52, pp. 97–104.PubMedCrossRefGoogle Scholar
  49. Fyhn, M., Gabrielsen, G.W., Nordoy, E.S., Moe, B., Langseth, I., and Bech, C., Individual Variation in Field Metabolic Rate of Kittiwakes (Rissa tridactyla) during the Chick-Rearing Period, Physiol. Biochem. Zool., 2002, vol. 74, pp. 343–355.CrossRefGoogle Scholar
  50. Garland, T. and Else, P.L., Seasonal, Sexual and Individual Variation in Endurance and Activity Metabolism in Lizards, Am. J. Physiol., 1987, vol. 252, pp. 439–449.Google Scholar
  51. Garland, T., Jr., and Bennett, A.F., Genetic Basis of Activity Metabolism. 2. Quantitative Genetics of Maximal Oxygen Consumption in a Garter Snake, Am. J. Physiol., 1990, vol. 259, pp. R986–R992.PubMedGoogle Scholar
  52. Gavrilov, V.M., Maximal, Potential Productive, and Normal Metabolic Rates for Existence in Passerine and Non-Passerine Birds. 2. The Connection with External Work, Energy, and Ecological Consequences, Zool. Zh., 1995, vol. 74, no. 4, pp. 108–123.Google Scholar
  53. Gavrilov, V.M., Basic Avian Energetics: Evolutionary and Population Effects, Ornitologiya, 1996, issue 27, pp. 14–33.Google Scholar
  54. Gavrilov, V.M., Energetics and Avian Behavior, vol. 11, part 1, of Physiology and General Biology Reviews, Amsterdam: Harwood Acad. Publ. GmbH, 1997.Google Scholar
  55. Gavrilov, V.M., Kerimov, A.B., and Ivankina, E.V., Metabolism and Population Geographic Variations in Plumage Colour in the Pied Flycatcher, Proc. VI Meeting on the Project “Species and its Productivity in the Distribution Area”, UNESCO Programme “Man and Biosphere”, St. Petersburg, November 23–26, 1993, St. Petersburg: Gidrometeoizdat, 1993, pp. 148–151.Google Scholar
  56. Gavrilov, V.M., Kerimov, A.V., and Ivankina, E.V., Population and Geographical Variations of Feather Coloration and Metabolism of Males of Different Color Morphs in Pied Flycatcher, Dokl. Ross. Akad. Nauk, Obshch. Biol., 1993, vol. 333, no. 6, pp. 807–810.Google Scholar
  57. Gavrilov, V.M., Kerimov, A.V., Golubeva, T.B., Ivankina, E.V., and Ilyina, T.A., Ecological Energetics and Population Ecology of the Great Tit, in Kol’tsevanie v izuchenii migratsii ptits v Rossii i sopredel’nykh gosudarstvakh. 1986–1987 gg. (Ringing in Studying Bird Migration in Russia and Neighboring States. 1986–1987), Moscow: Nauka, 1994, pp. 110–158.Google Scholar
  58. Gavrilov, V.M., Kerimov, A.B., Aleksandrov, L.I., Golubeva, T.B., Ivankina, E.V., Ilyina, T.A., and Shishkin, V.S., Energetics, Morphophysiological Differences of Individuals, and Population Structure in Birds. II. Energetics, Morphophysiological Differences of Individuals, and Population Structure in the Pied Flycatcher, Ornitologiya, 1996, issue 27, pp. 74–97.Google Scholar
  59. Gebhardt-Henrich, S.G. and van Noordwijk, A.J., Nestling Growth in the Great Tit. I. Heritability Estimates under Different Environmental Conditions, J. Evol. Biol., 1991, vol. 2, pp. 341–362.CrossRefGoogle Scholar
  60. Gebhardt-Henrich, S.G. and van Noordwijk, A.J., The Genetical Ecology of Nestling Growth in the Great Tit. Environmental Influences on the Expression of Genetic Variances during Growth, Funct. Ecol., 1994, vol. 8, pp. 469–476.CrossRefGoogle Scholar
  61. Glazier, D.S., Beyond the’ 3/4-Power Law’: Variation in the Intra- and Interspecific Scaling of Metabolic Rate in Animals, Biol. Rev., 2005, vol. 80, pp. 611–662.PubMedCrossRefGoogle Scholar
  62. Grinkov, V.G., The Conditions for a Stable Maintenance of Phenotypic Population Structure by the Example of Breeding Coloration in Male Pied Flycatchers (Ficedula hypoleuca Pallas), Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State Univ., 2000.Google Scholar
  63. Hansen, T.F., Stabilizing Selection and the Comparative Analysis of Adaptation, Evolution, 1997, vol. 51, no. 5, pp. 1341–1351.CrossRefGoogle Scholar
  64. Hasselquist, D., Bensch, S., and von Schantz, T., Estimating Cuckoldry in Birds: The Heritability Method and DNA Fingerprinting Give Different Results, Oikos, 1995, vol. 72, pp. 173–178.CrossRefGoogle Scholar
  65. Hayes, J.P. and Chappell, M.A., Individual Consistency of Maximal Oxygen Consumption in Deer Mice, Funct. Ecol., 1990, vol. 4, pp. 495–503.CrossRefGoogle Scholar
  66. Hayes, J.P. and O’Connor, C.S.O., Natural Selection on Thermogenic Capacity of High-Altitude Deer Mice, Evolution, 1999, vol. 53, pp. 1280–1287.CrossRefGoogle Scholar
  67. Hayes, J.P., Garland, T., Jr., and Dohm, M.R., Individual Variation in Metabolism and Reproduction of Mus: Are Energetics and Life History Linked? Funct. Ecol., 1992a, vol. 6, pp. 5–14.CrossRefGoogle Scholar
  68. Hayes, J.P., Speakman, J.R., and Racey, P.A., Sampling Bias in Respirometry, Physiol. Zool., 1992b, vol. 65, pp. 604–619.Google Scholar
  69. Hayes, J.P., Bible, C.A., and Boone, J.D., Repeatability of Mammalian Physiology: Evaporative Water Loss and Oxygen Consumption of Dipodomys merriami, J. Mamm., 1998, vol. 79, pp. 445–485.CrossRefGoogle Scholar
  70. Hipfner, J.M., Gaston, A.J., and Storey, A.E., Food Supply and the Consequences of Egg Size in the Thick-Billed Murre, Condor., 2001, vol. 103, pp. 240–247.CrossRefGoogle Scholar
  71. Hoffmann, A.A. and Meril Evolution under Favourable and Unfavourable Conditions, Trends Ecol. Evol., 1999, vol. 14, pp. 96–101.PubMedCrossRefGoogle Scholar
  72. Hõrak, P., Saks L., Ots, I., and Kollist, H., Repeatability of Condition Indices in Captive Greenfinches (Carduelis chloris), Can. J. Zool., 2002, vol. 80, pp. 636–643.CrossRefGoogle Scholar
  73. Ilyina, T.A., Time and Energy Budgets of the Male Pied Flycatcher (Ficedula hypoleuca) with Different Breeding Coloration during Prenesting Period, Ornitologiya, 2004a, issue 31, pp. 70–78.Google Scholar
  74. Ilyina, T.A., The Energy Cost of Advertising Behavior in Male Pied Flycatcher (Ficedula hypoleuca) with Different Breeding Coloration, Zool. Zh., 2004b, vol. 83, no. 11, pp. 1387–1393.Google Scholar
  75. Ilyina, T.A. and Ivankina, E.V., Seasonal Variation of Singing Activity and Relative Effect of Advertising Behaviour of Males with Different Plumage Colour in the Pied Flycatcher (Ficedula hypoleuca), Acta Ornithol., 2001, vol. 36, pp. 85–89.Google Scholar
  76. Ivankina, E.V., Grinkov, V.G., and Kerimov A.B., Male Colour Type and Lifetime Breeding Success in the Pied Flycatcher Ficedula hypoleuca, Acta Ornithol., 2001, vol. 36, pp. 91–96.Google Scholar
  77. Ivankina, E.V., Ilyina, T.A., Grinkov, V.G., Bushuev, A.V., and Kerimov, A.B., Ambient Temperature in Spring Influences the Phenotypic Structure of Pied Flycatcher Populations Ficedula hypoleuca, Hole Using: Adaptations and Constraints, Proc. Hole-Breeding Passerines Meeting, Bialowieza, Poland, September 7–12, 2007, 2007, p. 15.Google Scholar
  78. Ivankina, E.V., Kerimov, A.B., Grinkov, V.G., and Bushuev, A.V., Structural and Functional Aspects of Variation of Male Breeding Ornamentation in the Pied Flycatcher Ficedula hypoleuca (Aves: Passeriformes), Zh. Obshch. Biol., 2007, vol. 68, no. 4, pp. 278–295.PubMedGoogle Scholar
  79. Järvinen, A. and Ylimaunu, J., Significance of Egg Size on the Growth of Nestling Pied Flycatchers Ficedula hypoleuca, Ann. Zool. Fennici, 1984, vol. 21, pp. 213–216.Google Scholar
  80. Jensen, H., Saether, B.E., Ringsby, T.H., Tufto, J., Griffith, S.C., and Ellegren, H., Sexual Variation in Heritability and Genetic Correlations of Morphological Traits in House Sparrow (Passer domesticus), J. Evol. Biol., 2003, vol. 16, no. 6, pp. 1296–1307.PubMedCrossRefGoogle Scholar
  81. Johnson, M.S. and Speakman, J.R., Heritability of Resting Metabolic Rate (RMR) in the Short-Tailed Field Vole (Microtus agrestis), FASEB J., 2000, vol. 14, no. 4, p. 757.Google Scholar
  82. Johnson, M.S. and Speakman, J.R., Heritability of Resting Metabolic Rate in Short-Tailed Field Voles, Microtus agrestis, Comp. Biochem. Physiol., 2007, vol. 148,part A, pp. 21–22.Google Scholar
  83. Kalabukhov, N.I., Preservation of the Organism Energy Balance as the Basis for Adaptation Process, Zh. Obshch. Biol., 1946, vol. 7, no. 6, pp. 417–434.Google Scholar
  84. Kerimov, A.B. and Ivankina, E.V., The Relations between Resting Metabolic Rate of Fledglings and Father’s Colour Type in the Pied Flycatcher (Ficedula hypoleuca), The Ring, 1999, vol. 21, no. l, p. 203.Google Scholar
  85. Kerimov, A.B. and Ivankina, E.V., Sociodemographic Factors of the Variation in Basal Metabolic Rate in Wintering Groups of the Great Tit (Parus major), Zool. Zh., 1999, vol. 78, no. 3, pp. 358–371.Google Scholar
  86. Kerimov, A.B., Ivankina, E.V., Ilyina, T.A., and Bushuev, A.V., Energy Diversity of a Polymorphic Population of the Pied Flycatcher Ficedula hypoleuca during Mating Season, in Populyatsionnaya ekologiya zhivotnykh (Population Ecology of Animals), Moskvitina, N.S., Ed., Tomsk: Izd. Tomsk Univ., 2006, pp. 35–36.Google Scholar
  87. Klaassen, M., Bech, C., and Slagsvold, G., Basal Metabolic Rate and Thermal Conductance in Arctic Tern Chicks and the Effect of Heat Increment of Feeding on Thermoregulatory Expenses, Ardea, 1989, vol. 77, no. 2, pp. 193–200.Google Scholar
  88. Konarzewski, M., Ksçżek, A., and Łapo, I.B., Artificial Selection on Metabolic Rates and Related Traits in Rodents, Integr. Comp. Biol., 2005, vol. 45, pp. 416–425.CrossRefGoogle Scholar
  89. Ksążek, A., Konarzewski, M., and Łapo, I.B., Anatomic and Energetic Correlates of Divergent Selection for Basal Metabolic Rate in Laboratory Mice, Physiol. Biochem. Zool., 2004, vol. 77, pp. 890–899.CrossRefGoogle Scholar
  90. Labocha, M.K., Sadowska, E.T., Baliga K., Semer, A.K., and Koteja, P., Individual Variation and Repeatability of Basal Metabolism in The Bank Vole, Clethrionomys glareolus, Proc. Royal Soc. London, Ser. B, 2004, vol. 271, pp. 367–372.CrossRefGoogle Scholar
  91. Lacy, R.C. and Lynch, C.R., Quantitative Genetic Analysis of Temperature Regulation in Mus musculus, I. Partitioning of Variance, Genetics, 1979, vol. 91, pp. 743–753.PubMedGoogle Scholar
  92. Larsson, K., Inheritance of Body Size in the Barnacle Goose under Different Environmental Conditions, J. Evol. Biol., 1993, vol. 6, pp. 195–208.CrossRefGoogle Scholar
  93. Larsson, K., Rattiste, K., and Lilleleht, V., Heritability of Head Size in the Common Gull Larus canus in Relation to Environmental Conditions during Offspring Growth, Heredity, 1997, vol. 79, pp. 201–207.CrossRefGoogle Scholar
  94. Lessells, C.M. and Boag, P.T., Unrepeatable Repeatabilities: A Common Mistake, Auk, 1987, vol. 104, pp. 116–121.Google Scholar
  95. Lifjeld, J.T., Slagsvold, T., and Lampe, H.M., Low Frequency of Extra-Pair Paternity in Pied Flycatchers Revealed by DNA Fingerprinting, Behav. Ecol. Sociobiol. 1991, vol. 29, pp. 95–101.CrossRefGoogle Scholar
  96. Lu, Q., Zhong, W.-Q., and Wang, D.-H., Individual Variation and Repeatability of the Aerobic Performance in Brandt’s Voles (Lasiopodomys brandtii), J. Thermal Biol., 2007, vol. 32, pp. 413–420.CrossRefGoogle Scholar
  97. Lubjuhn, T., Winkel, W., Epplen, J.T., and Brün, J., Reproductive Success of Monogamous and Polygynous Pied Flycatchers (Ficedula hypoleuca), Behav. Ecol. Sociobiol., 2000, vol. 48, pp. 12–17.CrossRefGoogle Scholar
  98. Luke, X.Z., Adeyemo, A., Rotimi, C., and Cooper, R., Heritability of Resting Metabolic Rate in a Lean Nigerian Population, Genetic Epidemiol., 2000, vol. 19, p. 260.Google Scholar
  99. Lundberg, A. and Alatalo, R.V., The Pied Flycatcher, London: T. and A.D. Poyser Ltd., 1992.Google Scholar
  100. Lynch, C.B. and Sulzbach, D.S., Quantitative Genetic Analysis of Temperature Regulation in Mus musculus. II. Diallel analysis of individual traits, Evolution, 1984, vol. 38, pp. 527–540.CrossRefGoogle Scholar
  101. Lynch, M. and Walsh, B., Genetics and Analysis of Quantitative Traits, Sunderland, MA: Sinauer Associates, 1998.Google Scholar
  102. Møller, P. and Birkhead, T.R., Validation of the Heritability Method to Estimate Extra-Pair Paternity in Birds, Oikos, 1992, vol. 64, no. 3, pp. 485–488.CrossRefGoogle Scholar
  103. MacLaury, D.W. and Johnson, T.H., Selection for High and Low Oxygen Consumption in Chickens, Poultry Science, 1972, vol. 51, no. 2, pp. 591–597.PubMedGoogle Scholar
  104. Marais, E. and Chown, S.L., Repeatability of Standard Metabolic Rate and Gas Exchange Characteristics in a Highly Variable Cockroach, Perisphaeria sp., J. Exp. Biol., 2003, vol. 206, pp. 4565–4574.PubMedCrossRefGoogle Scholar
  105. McCarthy, I.D., Temporal Repeatability of Relative Standard Metabolic Rate in Juvenile Atlantic Salmon and Its Relation with Life History Variation, J. Fish Biol., 2000, vol. 57, pp. 224–238.CrossRefGoogle Scholar
  106. McKechnie, A.E., Freckleton, R.P., and Jetz, W., Phenotypic Plasticity in the Scaling of Avian Basal Metabolic Rate, Proc. Royal Soc. London, Ser. B, 2006, vol. 273, pp. 931–937.CrossRefGoogle Scholar
  107. McKechnie, A.E., Chetty, K., and Lovegrove, E.G., Phenotypic Flexibility in Basal Metabolic Rate in Laughing Doves: Responses to Short-Term Thermal Acclimation, J. Exp. Biol., 2007, vol. 210, pp. 97–106.PubMedCrossRefGoogle Scholar
  108. McKechnie, A.E., Phenotypic Flexibility in Basal Metabolic Rate and the Changing View of Avian Physiological Diversity: A Review, J. Comp. Physiol. B., 2008, vol. 178, no. 3, pp. 235–247.PubMedCrossRefGoogle Scholar
  109. McNab, B.K., The Physiological Ecology of Vertebrates: A View from Energetics, Ithaca, NY: Comstock Publ. Associates, 2002.Google Scholar
  110. Meril the Collared Flycatcher under Different Environmental Conditions, Evolution, 1991, vol. 51, pp. 526–536.Google Scholar
  111. Meril Genotype-Environment Interaction in the Body Size of Blue Tit (Parus caeruleus), Genetics, 1998, vol. 148, pp. 1233–1244.Google Scholar
  112. Meril Shape in Natural Population of Collared Flycatchers, Ficedula albicollis, J. Evol. Biol., 1993, vol. 6, pp. 375–398.Google Scholar
  113. Merilve Genetics of Sexual Size Dimorphism in the Collared Flycatcher, Ficedula albicollis, Evolution, 1998, vol. 52, pp. 870–876.Google Scholar
  114. Moreno, J., Lobato, E., Morales, J., Merino, S., Martinez-De La Puente J., Tomás G., Pre-Laying Nutrition Mediates Maternal Effects on Offspring Immune Capacity and Growth in the Pied Flycatcher, Oecologia, 2008, vol. 156. pp. 727–735.PubMedCrossRefGoogle Scholar
  115. Nespolo, R.F. and Franco, M., Whole-Animal Metabolic Rate Is a Repeatable Trait: A Meta Analysis, J. Exp. Biol., 2007, vol. 210, no. 11, pp. 2000–2005.PubMedCrossRefGoogle Scholar
  116. Nespolo, R.F., Bacigalupe, L.D., and Bozinovic, F., Heritability of Energetics in a Wild Mammal, the Leaf-Eared Mouse (Phyllotis darwini), Evolution, 2003a, vol. 57, no. 7, pp. 1679–1688.PubMedGoogle Scholar
  117. Nespolo, R.F., Lardies, M.A., and Bozinovic, F., Intrapopulation Variation in the Standard Metabolic Rate of Insects: Repeatability, Thermal Dependence and Sensitivity (Q10) of Oxygen Consumption in a Cricket, J. Exp. Biol., 2003b, vol. 206, pp. 4309–4315.PubMedCrossRefGoogle Scholar
  118. Nespolo, R.F., Bustamante, D.M., Bacigalupe, L.D., and Bozinovic, F., Quantitative Genetics of Bioenergetics and Growth-Related Traits in the Wild Mammal Phyllotis darwini, Evolution, 2005, vol. 59, pp. 1829–1837.PubMedGoogle Scholar
  119. Nilsson, J.Å., Metabolic Consequences of Hard Work, Proc. Royal Soc. London, Ser. B, 2002, vol. 269, pp. 1735–1739.CrossRefGoogle Scholar
  120. Nilsson, J.-Å, Akesson, M., and Nilsson, J. F., Heritability of Resting Metabolic Rate in a Wild Population of Blue Tits, J. Evol. Biol., 2009, vol. 22, pp. 1867–1874.PubMedCrossRefGoogle Scholar
  121. Pérusse, L., Jacobson, P., Rice, T., Rao, D.C., Sjöström, L., and Bouchard, C., Heritability Estimates of Resting Metabolic Rate in Quebec and Swedish Families, Obesity Research, 2001, vol. 9,suppl. 3, p. 87S.Google Scholar
  122. Potti, J., Sexual Size Dimorphism and Sources of Variation in the Growth of Wing Feathers in Nestling Pied Flycatchers Ficedula hypoleuca, Ardeola, 2000, vol. 47, pp. 37–47.Google Scholar
  123. Potti, J. and Merino, S., Heritability Estimates and Maternal Effects on Tarsus Length in Pied Flycatchers, Ficedula hypoleuca, Oecologia, 1994, vol. 100, pp. 331–338.CrossRefGoogle Scholar
  124. Potti, J., Moreno, J., and Merino, S., Repeatability of Parental Effort in Male and Female Pied Flycatchers as Measured with Doubly Labeled Water, Can. J. Zool., 1999, vol. 77, pp. 174–179.CrossRefGoogle Scholar
  125. Price, T., Reproductive Responses to Varying Food Supply in a Population of Darwin’s Finches: Clutch Size, Growth Rates and Hatching Synchrony, Oecologia, 1985, vol. 66, pp. 411–416.CrossRefGoogle Scholar
  126. Price, T. and Langen, T., Evolution of Correlated Characters, Trends. Ecol. Evol., 1992, vol. 7, pp. 307–310.PubMedCrossRefGoogle Scholar
  127. Rønning, B., Moe, B., and Bech, C., Long-Term Repeatability Makes Basal Metabolic Rate a Likely Heritable Trait in the Zebra Finch Taeniopygia guttata, J. Exp. Biol., 2005, vol. 208, pp. 4663–4669.PubMedCrossRefGoogle Scholar
  128. Røning, B., Jensen, H., Moe, B., and Bech, C., Basal Metabolic Rate: Heritability and Genetic Correlations with Morphological Traits in the Zebra Finch, J. Evol. Biol., 2007, vol. 20, no. 5, pp. 1815–1822.CrossRefGoogle Scholar
  129. Røkaft, E., Järvi, T., Bakken, M., Bech, C., and Reinertsen, R.E., The Relationship between Social Status and Resting Metabolic Rate in Great Tits (Parus major) and Pied Flycatchers (Ficedula hypoleuca), Anim. Behav., 1986, vol. 34, no. 3, pp. 838–842.CrossRefGoogle Scholar
  130. Ravussin, E., Energy Metabolism in Obesity Studies in the Pima Indians, Diabetes Care, 1993, vol. 16, no. 1, pp. 232–238.PubMedCrossRefGoogle Scholar
  131. Rezende, E.L., Chappell, M.A., and Hammond, K.A., Cold Acclimation in Peromyscus: Temporal Effects and Individual Variation in Maximal Metabolism and Ventilatory Traits, J. Exp. Biol., 2004, vol. 207, pp. 295–305.PubMedCrossRefGoogle Scholar
  132. Rezende, E.L., Chappell, M.A., Gomes, F.R., Malisch, J.L., and Garland, T., Jr., Maximal Metabolic Rates during Voluntary Exercise, Forced Exercise, and Cold Exposure in House Mice Selectively Bred for High Wheel-Running, J. Exp. Biol., 2005, vol. 208, pp. 2447–2458.PubMedCrossRefGoogle Scholar
  133. Rice, T., Tremblay, A., Deriaz, O., Pérusse, L., Rao, D.C., and Bouchard, C., Genetic Pleiotropy for Resting Metabolic Rate with Fat-free Mass and Fat Mass: the Quebec Family Study, Obesity Research, 1996, vol. 4, pp. 125–131.PubMedGoogle Scholar
  134. Riska, B., Prout, T., and Turelli, M., Laboratory Estimates of Heritabilities and Genetic Correlations in Nature, Genetics, 1989, vol. 123, pp. 865–871.PubMedGoogle Scholar
  135. Roff, D.A., Evolutionary Quantitative Genetics, N.Y.: Chapman and Hall, 1997.Google Scholar
  136. Rogowitz, G.L. and Chappell, M.A., Energy metabolism of Eucalyptus-Boring Beetles at Rest and during Locomotion: Gender Makes a Difference, J. Exp. Biol., 2000, vol. 203, pp. 1131–1139.PubMedGoogle Scholar
  137. Russell, G.A. and Chappell, M.A., Is BMR Repeatable in Deer Mice? Organ Mass Correlates and the Effects of Cold Acclimation and Natal Altitude, J. Comp. Physiol. B, 2007, vol. 177, no. 1, pp. 75–87.PubMedCrossRefGoogle Scholar
  138. Sadowska, E.T., Labocha, M.K., Baliga, K., Stanisz, A., Wroblewska, A., Jagusiak, W., and Koteja, P., Genetic Correlations between Basal and Maximum Metabolic Rates in a Wild Rodent: Consequences for Evolution of Endothermy, Evolution, 2005, vol. 59, pp. 672–681.PubMedGoogle Scholar
  139. Sadowska, E.T., Baliga, K., Labocha, M.K., and Koteja, P., Basal Metabolic Rate and Life History in the Bank Vole, Myodes glareolus, Comp. Biochem. Physiol., 2007, vol. 148,part A, p. 20.Google Scholar
  140. Schmidt-Nielsen, K., Animal Physiology: Adaptation and Environment, vol. 2, Moscow: Mir, 1982.Google Scholar
  141. Schubert, K.A., Breeding on a Budget: Fundamental Links between Energy Metabolism and Mammalian Life History Trade-offs, PhD Thesis, Groningen, The Netherlands: Rijksuniversiteit Groningen, 2010.Google Scholar
  142. Simons, A.M. and Roff, D.A., The Effect of Environmental Variability on the Heritabilities of Traits of a Field Cricket, Evolution, 1994, vol. 48, pp. 1637–1649.CrossRefGoogle Scholar
  143. Slagsvold, T., Johnsen, A., Lampe, H.M., Lifjeld, J.T., Do Female Pied Flycatchers Seek Extrapair Copulations with Familiar Males? A Test of the Incomplete Knowledge Hypothesis, Behav. Ecol., 2001, vol. 4, pp. 412–418.CrossRefGoogle Scholar
  144. Speakman, J.R., Racey, P.A., Haim, A., Webb, P.I., Ellison, G.T.H., and Skinner, J.D., Inter- and Intraindividual Variation in Daily Energy Expenditure of the Pouched Mouse (Saccostomus campestris), Funct. Ecol., 1994, vol. 8, pp. 336–342.CrossRefGoogle Scholar
  145. Szafrąńska, P.A., Zub, K., and Konarzewki, M., Long-Term Repeatability of Body Mass and Resting Metabolic Rate in Free-Living Weasels Mustela nivalis, Funct. Ecol., 2007a, vol. 21, pp. 731–737.CrossRefGoogle Scholar
  146. Szafrąńska, P.A., Zub, K., and Konarzewki, M., Repeatability and Heritability of Body Mass and Resting Metabolic Rate (RMR) in Free Ranging Weasels (Mustela nivalis), Comp. Biochem. Physiol., 2007b, vol. 148,part A, p. 17.Google Scholar
  147. Terblanche, J.S., Klok, C.J., and Chown, S.L., Metabolic Rate Variation in Glossina pallidipes (Diptera: Glossinidae): Gender, Ageing and Repeatability, J. Insect Physiol., 2004a, vol. 50, pp. 419–428.PubMedCrossRefGoogle Scholar
  148. Terblanche, J.S., Klok, C.J., Marais, E., and Chown, S.L., Metabolic Rate in the Whip-Spider, Damon annulatipes (Arachnida: Amblypygi), J. Insect Physiol., 2004b, vol. 50, pp. 637–645.PubMedCrossRefGoogle Scholar
  149. Tieleman, B.I., Williams, J.B., Buschur, M.E., and Brown, C.R., Phenotypic Variation of Larks along an Aridity Gradient: Are Desert Birds More Flexible? Ecology, 2003, vol. 84, pp. 1800–1815.CrossRefGoogle Scholar
  150. Tieleman, B.L., Versteegh, M.A., Fries, A., Helm, B., Dingemanse, N.J., Gibbs, H.L., and Williams, J.B., Genetic Modulation of Energy Metabolism in Birds through Mitochondrial Function, Proc. Royal Soc. London, Ser. B, 2009a, vol. 276, pp. 1685–1693.CrossRefGoogle Scholar
  151. Tieleman, I., Versteegh, M., Helm, B., and Dingemanse, N., Quantitative Genetics Parameters Show Partial Independent Evolutionary Potential for Body Mass and Metabolism in Stonechats from Different Populations, J. Zool., 2009b, vol. 279, no. 2, pp. 129–136.CrossRefGoogle Scholar
  152. Vézina, F. and Thomas, D.W., Social Status Does Not Affect Resting Metabolic Rate in Wintering Dark-Eyed Juncos (Junco hyemalis), Physiol. Biochem. Zool., 2000, vol. 73, pp. 231–236.PubMedCrossRefGoogle Scholar
  153. Vézina, F. and Williams, T.D., Metabolic Costs of Egg Production in the European Starling (Sturnus vulgaris), Physiol. Biochem. Zool., 2002, vol. 75, pp. 377–385.PubMedCrossRefGoogle Scholar
  154. Vézina, F. and Williams, T.D., Plasticity in Body Composition in Breeding Birds: What Drives the Metabolic Costs of Egg Production? Physiol. Biochem. Zool., 2003, vol. 76, pp. 716–730.PubMedCrossRefGoogle Scholar
  155. Vézina, E. and Williams, T.D., The Metabolic Cost of Egg Production Is Repeatable, J. Exp. Biol., 2005, vol. 208, no. 13, pp. 2533–2538.PubMedCrossRefGoogle Scholar
  156. Vézina, E., Jalvingh, K.M., Dekinga, A., and Piersma, T., Acclimation to Different Thermal Conditions in a Northerly Wintering Shorebird Is Driven by Body Mass-Related Changes in Organ Size, J. Exp. Biol., 2006, vol. 209, pp. 3141–3154.PubMedCrossRefGoogle Scholar
  157. Van Noordwijk, A.J., van Balen, J.H., and Scharloo, W., Heritability of Body Size in a Natural Population of the Great Tit (Parus major) and Its Relation to Age and Environmental Conditions during Growth, Genetic Research, 1988, vol. 51, pp. 149–162.CrossRefGoogle Scholar
  158. Versteegh, M.A., Helm, B., Dingemanse, N.J., and Tieleman, B.L., Repeatability and Individual Correlates of Basal Metabolic Rate and Total Evaporative Water Loss in Birds: A Case Study in European Stonechats, Comp. Biochem. Physiol., 2008, vol. 150,part A, pp. 452–457.Google Scholar
  159. Virani, N.A. and Rees, B.B., Oxygen Consumption, Blood Lactate and Interindividual Variation in the Gulf Killifish, Fundulus grandis, during Hypoxia and Recovery, Comp. Biochem. Physiol., 2000, vol. 126,part A, pp. 397–405.Google Scholar
  160. Vysotsky, V.G., The Size and Plumage Color of Male Pied Flycatchers Ficedula hypoleuca, Rus. Ornitol. Zh., 1993, vol. 2,issue 2, pp. 149–162.Google Scholar
  161. Weigensberg, L. and Roff, D.A., Natural Heritabilities: Can They Be Reliably Estimated in the Laboratory? Evolution, 1996, vol. 50, pp. 2149–2157.CrossRefGoogle Scholar
  162. Wendeln, H., Body Mass of Female Common Terns (Sterna hirundo) during Courtship: Relationships to Male Quality, Egg Mass, Diet, Laying Date, and Age, Colonial Waterbirds, 1997, vol. 20, pp. 235–243.CrossRefGoogle Scholar
  163. Westneat, D.E. and Sherman, P.W., Density and Extra-Pair Fertilizations in Birds: A Comparative Analysis, Behav. Ecol. Sociobiol., 1997, vol. 41, pp. 205–215.CrossRefGoogle Scholar
  164. Westneat, D.E. and Webster, M.S., Molecular Analysis of Kinship in Birds: Interesting Questions and Useful Techniques, in Molecular Ecology and Evolution: Approaches and Applications, Schierwater, B., Streit, B., Wagner, G.P., and DeSalle, R., Eds., Basel: Birkhauser, 1994, pp. 91–126.Google Scholar
  165. Williams, A.J., Variation in Weight of Eggs and Its Effect on the Breeding Biology of the Great Skua, Emu, 1980, vol. 80, pp. 198–202.Google Scholar
  166. Williams, T.D., Intraspecific Variation in Egg Size and Egg Composition in Birds: Effects on Offspring Fitness, Biol. Rev., 1994, vol. 68, pp. 35–59.CrossRefGoogle Scholar
  167. Winkler, E.M., González, G.V., Valencia, M.R., and Brokordt, K.B., Repeatability and Heritability (h 2) of Physiological Traits in Juveniles of the Pacific Abalone (Haliotis discus hannai), Comp. Biochem. Physiol., 2007, vol. 148,part A, p. 22.Google Scholar
  168. Wone, B., Sears, M.W., Labocha, M.K., Donovan, E.R., and Hayes, J.P., Genetic Variances and Covariances of Aerobic Metabolic Rates in Laboratory Mice, Proc. Royal Soc. London, Ser. B, 2009, vol. 276, pp. 3695–3704.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. V. Bushuev
    • 1
  • A. B. Kerimov
    • 1
  • E. V. Ivankina
    • 2
  1. 1.Faculty of BiologyMoscow State UniversityMoscowRussia
  2. 2.Zvenigorod Biological StationMoscow State UniversityShikhovo, Odintsovo raion, Moscow oblastRussia

Personalised recommendations