Russian Journal of Genetics: Applied Research

, Volume 6, Issue 7, pp 771–777 | Cite as

Computer simulation of the spatial structures of MUC1 peptides capable of inhibiting apoptosis

  • N. V. Ivanisenko
  • I. N. Lavrik
  • V. A. Ivanisenko


The identification of new effective apoptosis inhibitors plays an important role in the development of drugs for the treatment of various disorders, including neurogenerative diseases. Apoptosis is initiated via the formation of macromolecular protein complexes. These complexes exert the activation of caspases, which are key regulators and executors of apoptosis. The death inducing signaling complex, (DISC) plays a central role in the induction of the extrinsic apoptosis pathway. The adaptor protein FADD is the core component of the DISC that is essential for caspase activation at the DISC and subsequent apoptosis initiation. Therefore, inhibitors of FADD may serve as candidate drugs inhibiting apoptosis. Furthermore, the study of the mechanisms of action of these inhibitors is of great interest for understanding the signal transduction pathways of apoptosis. It has been reported that the mucin type 1 glycoprotein (MUC1) is a natural protein inhibitor of FADD. In particular, two fragments of the primary structure of the cytoplasmic domain of MUC1 (MUC1-CD) are capable of inhibiting the binding of procaspase 8 to FADD. However, the 3D structure of MUC1 has not been obtained yet. This significantly complicates the rational design of potential drugs based on the peptides derived from the MUC1 structure. The aim of the present study was in silico prediction of the 3D structures of MUC1-CD peptides corresponding to protein fragments 120 and 4672, as well as the analysis of their conformational properties. The special attention was placed on the MUC1-CD (46-72) peptide, which is able to bind to FADD. By using the method of molecular dynamics in implicit water it was shown that the structure of the peptide MUC1-CD (46-72) is similar to the three-dimensional structures of at least four fragments of caspase 8. These results indicate that the molecular mechanism of the inhibitory action of the peptide can be explained by the competitive binding of MUC1 to FADD due to the structural and conformational similarity to fragments of the caspase 8 DEDs.


apoptosis programmed cell death FADD MUC1 caspase8 molecular dynamics implicit solvation generalized Born model protein structure prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agata, N., Ahmad, R., Kawano, T., Raina, D., Kharbanda, S., and Kufe, D., MUC1 oncoprotein blocks death receptormediated apoptosis by inhibiting recruitment of caspase-8, Cancer Res., 2008, vol. 68, no. 15, pp. 6136–6144. doi 10.1158/ 0008-5472.CAN-08-0464CrossRefPubMedPubMedCentralGoogle Scholar
  2. Carrington, P.E., Sandu, C., Wei, Y., Hill, J.M., Morisawa, G., Huang, T., Gavathiotis, E., Wei, Y., and Werner, M.H., The structure of FADD and its mode of interaction with procaspase-8, Mol. Cell, 2006, vol. 22, no. 5, pp. 599–610. doi 10.1016/j.molcel.2006.04.018CrossRefPubMedGoogle Scholar
  3. Case, D.A., Berryman, J.T., Betz, R.M., Cerutti, D.S., Cheatham, T.E., Darden, T.A., Duke, R.E., Giese, T.J., Gohlke, H., Goetz, A.W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., et al., AMBER 2015, San Francisco: University of California, 2015.Google Scholar
  4. Dickens, L.S., Boyd, R.S., Jukes-Jones, R., Hughes, M.A., Robinson, G.L., Fairall, L., Schwabe, J.W.R., and Cain, K., and Macfarlane, M., A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death, Mol. Cell, 2012, vol. 47, no. 2, pp. 291–305. doi 10.1016/j.molcel.2012.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  5. Herbert, A. and Sternberg, M.J.E., MaxCluster—A Tool for Protein Structure Comparison and Clustering, 2014. Scholar
  6. Huang, L., Chen, D., Liu, D., Yin, L., Kharbanda, S., and Kufe, D., MUC1 oncoprotein blocks glycogen synthase kinase 3ß-mediated phosphorylation and degradation of ß-catenin, Cancer Res., 2005, vol. 65, no. 22, pp. 10413–10422. doi 10.1158/0008-5472.CAN-05-2474CrossRefPubMedGoogle Scholar
  7. Kabsch, W. and Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 1983, vol. 22, no. 12, pp. 2577–2637.CrossRefPubMedGoogle Scholar
  8. Kufe, D., Inghirami, G., Abe, M., Hayes, D., Justi-Wheeker, H., and Schlom, J., Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors, Hybridoma, 1984, vol. 3, pp. 223–32. doi 10.1089/hyb.1984.3.223CrossRefPubMedGoogle Scholar
  9. Levitin, F., Stern, O., Weiss, M., Gil-Henn, C., Ziv, R., Prokocimer, Z., Smorodinsky, N.I., Rubinstein, D.B., and Wreschner, D.H., The MUC1 SEA module is a self-cleaving domain, J. Biol. Chem., 2005, vol. 280, no. 39, pp. 33374–33386. doi 10.1074/jbc.M506047200CrossRefPubMedGoogle Scholar
  10. Li, Y., Kuwahara, H., Ren, J., Wen, G., and Kufe, D., The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-aßsociated antigen with GSK3 and ß-catenin, J. Biol. Chem., 2001, vol. 276, no. 9, pp. 6061–6064. doi 10.1074/jbc.C000754200CrossRefPubMedGoogle Scholar
  11. Ligtenberg, M.J., Kruijshaar, L., Buijs, F., Van Meijer, M., Litvinov, S.V., and Hilkens, J., Cell-associated episialin is a complex containing two proteins derived from a common precursor, J. Biol. Chem., 1992, vol. 267, no. 9, pp. 6171–6177.PubMedGoogle Scholar
  12. Macao, B., Johansson, D.G., Hansson, G.C., and Härd, T., Autoproteolysis coupled to protein folding in the SEA domain of the membranebound MUC1 mucin, Nat. Struct. Mol. Biol., 2006, vol. 13, no. 1, pp. 71–76. doi 10.1038/nsmb1035CrossRefPubMedGoogle Scholar
  13. Nguyen, H., Roe, D.R., and Simmerling, C., Improved generalized born solvent model parameters for protein simulations, J. Chem. Theory Comput., 2013, vol. 9, no. 4, pp. 2020–2034. doi 10.1021/ct3010485CrossRefPubMedPubMedCentralGoogle Scholar
  14. Raina, D., Ahmad, R., Kumar, S., Ren, J., Yoshida, K., Kharbanda, S., and Kufe, D., MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage, EMBO J., 2006, vol. 25, no. 16, pp. 3774–3783. doi 10.1038/sj.emboj.7601263CrossRefPubMedPubMedCentralGoogle Scholar
  15. Raina, D., Agarwal, P., Lee, J., Bharti, A., McKnight, C.J., Sharma, P., Kharbanda, S., and Kufe, D., Characterization of the MUC1-C cytoplasmic domain as a cancer target, PLOS One, 2015, vol. 10, no. 8. doi 10.1371/journal.pone.0135156Google Scholar
  16. Ren, J., Li, Y., and Kufe, D., Protein kinase C d regulates function of the DF3/MUC1 carcinoma antigen in ß-catenin signaling, J. Biol. Chem., 2002, vol. 277, no. 20, pp. 17616–17622. doi 10.1074/jbc.M200436200CrossRefPubMedGoogle Scholar
  17. Schleich, K., Warnken, U., Fricker, N., Özturk, S., Richter, P., Kammerer, K., Schnölzer, M., Karmmer, P.H., and Lavrik, I.N., Stoichiometry of the CD95 death-inducing signaling complex: Experimental and modeling evidence for a death effector domain chain model, Mol. Cell, 2012, vol. 47, no. 2, pp. 306–319. doi 10.1016/j.molcel.2012.05.006CrossRefPubMedGoogle Scholar
  18. Shatsky, M., Nussinov, R., and Wolfson, H.J., A method for simultaneous alignment of multiple protein structures, Proteins-Structure Function Bioinf., 2004, vol. 56, no. 1, pp. 143–156. doi 10.1002/prot.10628CrossRefGoogle Scholar
  19. Shen, C., Yue, H., Pei, J., Guo, X., Wang, T., and Quan, J.M., Crystal structure of the death effector domains of caspase-8, Biochem. Bioph. Res. Co., 2015, vol. 463, no. 3, pp. 297–302. doi 10.1016/j.bbrc.2015.05.054CrossRefGoogle Scholar
  20. Wei, X., Xu, H., and Kufe, D., Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response, Cancer Cell, 2005, vol. 7, no. 2, pp. 167–178. doi 10.1016/j.ccr.2005.01.008CrossRefPubMedGoogle Scholar
  21. Yang, J.K., Wang, L., Zheng, L., Wan, F., Ahmed, M., Lenardo, M.J., and Wu, H., Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition, Mol. Cell, 2005, vol. 20, no. 6, pp. 939–949. doi 10.1016/j.ccr.2005.01.008CrossRefPubMedPubMedCentralGoogle Scholar
  22. Zagrovic, B. and Pande, V., Solvent viscosity dependence of the folding rate of a small protein: Distributed computing study, J. Comput. Chem., 2003, vol. 24, no. 12, pp. 1432–1436. doi 10.1002/jcc.10297CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. V. Ivanisenko
    • 1
    • 2
  • I. N. Lavrik
    • 1
    • 3
  • V. A. Ivanisenko
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Translational Inflammation ResearchInstitute of Experimental Internal Medicine, Otto von Guericke UniversityMagdeburgGermany

Personalised recommendations