Russian Journal of Genetics: Applied Research

, Volume 6, Issue 6, pp 657–668 | Cite as

Transgenic farm animals: the status of research and prospects

  • N. A. Zinovieva
  • N. A. Volkova
  • V. A. Bagirov
  • G. Brem
Article

Abstract

The production of transgenic animals is of great interest for current basic and applied research. This article is a review of methods for the production of transgenic farm animals and their advantages and disadvantages. The advances in various fields of genetic engineering of domestic animals are discussed, including the creation of animals with altered metabolism for higher quality and productivity, animals genetically resistant to infectious diseases, producers of biologically active recombinant proteins, donors of organs for human transplantation (xenotransplantation), and animal models.

Keywords

recombinant DNA transgenesis genetically modified farm animals animal bioreactors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, B., Renner, S., Kessler, B., Klymiuk, N., Kurome, M., Wünsch, A., and Wolf, E., Transgenic pigs as models for translational biomedical research, J. Mol. Med., 2010, vol. 88, no. 7, pp. 653–664. doi 10.1007/s00109-010-0610-9.PubMedCrossRefGoogle Scholar
  2. Bagle, T.R., Kunkulol, R.R., Baig, M.S., and More, S.Y., Transgenic animals and their application in medicine, Int. J. Med. Res. Health Sci., 2013, vol. 2, no. 1, pp. 107–116.Google Scholar
  3. Bosch, P., Forcato, D.O., Alustiza, F.E., et al., Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals, Cell. Mol. Life Sci., 2015, vol. 72, pp. 1907–1929.PubMedCrossRefGoogle Scholar
  4. Brackett, B.G., Baranska, W., Sawikki, W., and Korpowski, H., Uptake of heterologous genome by mammalian spermatozoa and itstransfer to ova through fertilization, Proc. Natl. Acad. Sci., 1971, vol. 68, pp. 353–357.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brem, G., Brenig, B., Goodman, H.M., et al., Production of transgenic mice, rabbits and pig by microinjection into pronuclei, Zuchtkunde, 1985, vol. 20, pp. 251–252.Google Scholar
  6. Brinster, R. and Nagano, M., Spermatogonial stem cell transplantation, cryopreservation and culture, Semin. Cell. Dev. Biol., 1998, vol. 9, no. 4, pp. 401–409.CrossRefGoogle Scholar
  7. Byun, S.J., Kim, S.W., Kim, K.W., et al., Oviduct specific enhanced green fluorescent protein expression in transgenic chickens, Biosci. Biotechnol. Biochem., 2011, vol. 75, no. 4, pp. 646–649.PubMedCrossRefGoogle Scholar
  8. Campbell, K.H., McWhir, J., Ritchie, W.A., and Wilmut, I., Sheep cloned by nuclear transfer from a cultured cell line, Nature, 1996, vol. 380, pp. 64–66.PubMedCrossRefGoogle Scholar
  9. Carlson, D.F., Tan, W., Lillico, S.G., et al., Efficient TALEN-mediated gene knockout in livestock, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 43, pp. 17382–17387.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chan, A., Homan, E., Ballou, L., et al., Transgenic cattle produced by reverse-transcribed gene transfer in oocytes, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 14028–14033.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chang, K., Qian, J., Jiang, M., et al., Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer, BMC Biotechnol., 2002, vol. 2, p. 5. doi 10.1186/1472-6750-2.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chapman, S.C., Lawson, A., Macarthur, W.C., et al., Ubiquitous GFP expression in transgenic chickens using a lentivira vector, Development, 2005, vol. 132, pp. 935–940.PubMedCrossRefGoogle Scholar
  13. Cibelli, J.B., Campbell, K.H., Seidel, G.E., et al., The health profile of cloned animals, Nat. Biotechnol., 2002, vol. 20, pp. 13–14.PubMedCrossRefGoogle Scholar
  14. Clark, K.J., Carlson, D.F., and Fahrenkrug, S.C., Pigs taking wings with transposons and recombinases, Genome Biol., 2007, vol. 8., suppl. 1, p. 13.CrossRefGoogle Scholar
  15. Cong, L., Ran, F.A., Cox, D., et al., Multiplex genome engineering using CRISPR/Cas system, Science, 2013, vol. 339, no. 6121, pp. 819–823.PubMedPubMedCentralCrossRefGoogle Scholar
  16. d’Apice, A.J. and Cowan, P.J., Xenotransplantation: The next generation of engineered animals, Transpl. Immunol., 2009, vol. 21, pp. 111–115.PubMedCrossRefGoogle Scholar
  17. Dai, Y., Vaught, T.D., Boone, J., et al., Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs, Nat. Biotechnol., 2002, vol. 20, pp. 251–255.PubMedCrossRefGoogle Scholar
  18. de Koning, D.J., Archibald, A., and Haley, C.S., Livestock genomics: Bridging the gap between mice and men, Trends Biotechnol., 2007, vol. 25, pp. 483–489.PubMedCrossRefGoogle Scholar
  19. Delacote, F., Perez, C., Guyot, V., et al., High frequency targeted mutagenesis using engineered endonucleases and DNA-end processing enzymes, PloS One, 2013, vol. 8, no. 1, p. e53217.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dougherty, D.C. and Sanders, M.M., Estrogen action: Revitalization of the chick oviduct model, Trends Endocrinol. Metab., 2005, vol. 16, pp. 414–419.PubMedCrossRefGoogle Scholar
  21. Dyck, M.K., Lacroix, D., Pothier, F., and Sirard, M.A., Making recombinant proteins in animals–different systems, different applications, Trends Biotechnol., 2003, vol. 21, no. 9, pp. 394–409.PubMedCrossRefGoogle Scholar
  22. Ebert, K.M., Low, M.J., Overstrom, E.W., et al., Moloney MLV-rat somatotropin fusion gene produces biologically active somatotropin in a transgenic pig, Mol. Endocrinol., 1988, vol. 2, no. 3, pp. 277–283.PubMedCrossRefGoogle Scholar
  23. Ernst, L.K. and Zinovieva, N.A., Biologicheskie problemy zhivotnovodstva v XXI veke (Biological Problems of Livestock in the 21st Century), Moscow: Ross. Akad. S-kh. Nauk, 2008.Google Scholar
  24. Ernst, L.K., Volkova, N.A., and Zinovieva, N.A., Fenotipicheskii effekt ekspressii rekombinantnykh genov v organizme transgennykh zhivotnykh raznykh vidov (Phenotypic Effects of Expression of Recombinant Genes in an Organism of Transgenic Animals of Various Species), Moscow: Ross. Akad. S-kh. Nauk, 2008.Google Scholar
  25. Furlan-Magaril, M., Rebollar, E., Guerrero, G., et al., An insulator embedded in the chicken ß-globin locus regulates chromatin domain configuration and differential gene expression, Nucleic Acid Res., 2011, vol. 39, no. 1, pp. 89–103.PubMedCrossRefGoogle Scholar
  26. Gandolfi, F., Lavitrano, M., Camaioni, A., et al., The use of sperm-mediated gene transfer for the generation of transgenic pigs, J. Reprod. Fertil., 1989, vol. 81, pp. 23–28.CrossRefGoogle Scholar
  27. Gandolfi, F., Spermatozoa, DNA binding and transgenic animals, Trans. Res., 1998, vol. 7, pp. 147–155.Google Scholar
  28. Garrels, W., Mates, L., Holler, S., et al., Generation of transgenic pigs by the sleeping beauty transposition in zygotes, Reprod. Dom. Anim., 2010, vol. 45, p. 65.Google Scholar
  29. Ghazizadeh, S., Harington, R., and Taichmann, L., In vivo transduction of mouse epidermis with recombinant retroviral vectors: Implications for cutaneous gene therapy, Gene Ther., 1999, vol. 7, pp. 1267–1275.CrossRefGoogle Scholar
  30. Gordon, J.W., Scangos, D.J., Plotkin, J.A., et al., Genetic transformation of mouse embryos by microinjection of purified DNA, Proc. Natl. Acad. Sci. U.S.A., 1980, vol. 77, pp. 7380–7384.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Grosse-Hovest, L., Hartlapp, I., Marwan, W., et al., A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing, Eur. J. Immunol., 2003, vol. 33, no. 5, pp. 1334–1340.PubMedCrossRefGoogle Scholar
  32. Grosse-Hovest, L., Müller, S., Minoia, R., et al., Cloned transgenic farm animals produce a bispecific antibody for t cell-mediated tumor cell killing, Proc. Natl. Acad. Sci., 2004, vol. 101, no. 18, pp. 6858–6863.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Grosse-Hovest, L., Wick, W., Minoia, R., et al., Supraagonistic, bispecific single-chain antibody purified from the serum of cloned, transgenic cows induces T-cell-mediated killing of glioblastoma cells in vitro and in vivo, Int. J. Cancer, 2005, vol. 117, no. 6, pp. 1060–1064.PubMedGoogle Scholar
  34. Hai, T., Teng, F., Guo, R., et al., One-step generation of knockout pigs by zygote injection of Crispr/Cas system, Cell Res., 2014, vol. 24, pp. 372–375.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hammer, R., Pursel, V., Rexroad, J., et al., Production of trans-genie rabbits, sheep and pigs by microinjection, Nature, 1985, vol. 315, pp. 680–683.PubMedGoogle Scholar
  36. Harrison, M.M., Jenkins, B.V., O’Connor-Giles, K.M., and Wildonger, J.A., CRISPR view of development, Genes & Dev., 2014, vol. 28, pp. 1859–1872. doi 10.1101/gad.248252..CrossRefGoogle Scholar
  37. Harvey, A.J. Speksnijder, Baugh, L.R., et al., Expression of exogenous protein in the egg white of transgenic chickens, Nat. Biotechnol., 2002, vol. 20, pp. 396–399.PubMedCrossRefGoogle Scholar
  38. Haskell, R. and Bowen, R., Efficient production of transgenic cattle by retroviral infection of early embryos, Mol. Reprod. Dev., 1995, vol. 40, no. 3, pp. 386–390.PubMedCrossRefGoogle Scholar
  39. Hauschild, J., Petersen, B., Santiago, Y., et al., Efficient generation of a biallelic knockout in pigs using zincfinger nucleases, Proc. Natl. Acad. Sci., 2011, vol. 108, pp. 12013–12017.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Heo, Y., Quan, X., Xu, Y., et al., CRISPR/Cas9 nucleasemediated gene knock-in in bovine pluripotent stem cells and embryos, Stem Cells Dev. doi 10.1089/scd.2014..Google Scholar
  41. Hofmann, A., Kessler, B., Ewerling, S., et al., Efficient transgenesis in farm animals by lentiviral vectors, EMBO Rep., 2003, vol. 4, no. 11, pp. 1054–1060. doi 10.1038/sj.embor..PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hofmann, A., Kessler, B., Ewerling, S., et al., Epigenetic regulation of lentiviral transgene vectors in a large animal model, MolTher, 2006, vol. 13, pp. 59–66.Google Scholar
  43. Hofmann, A., Zakhartchenko, V., Weppert, M., et al., Generation of transgenic cattle by lentiviral gene transfer into oocytes, Biol. Reprod., 2004, vol. 71, no. 2, pp. 405–409.PubMedCrossRefGoogle Scholar
  44. Horii, T., Arai, Y., Yamazaki, M., et al., Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering, Sci. Rep., 2014, vol. 4, p. 4513. doi 10.1038/srep.PubMedCrossRefGoogle Scholar
  45. Houdebine, L., Production of pharmaceutical proteins by transgenic animals, Comp. Immunol., Microbiol. Infect. Dis., 2009, vol. 32, pp. 107–121.CrossRefGoogle Scholar
  46. Iqbal, K., Barg-Kues, B., Broll, S., et al., Cytoplasmic injection of circular plasmids allows targeted expression in mammalian embryos, BioTechniques, 2009, vol. 47, pp. 959–968.PubMedCrossRefGoogle Scholar
  47. Ivarie, R., Aviantransgenesis: Progress towards the promise, Trends Biotechnol., 2003, vol. 21, pp. 14–19.PubMedCrossRefGoogle Scholar
  48. Ivics, Z., Hackett, P.B., Plasterk, R.H., and Izsvák, Z., Molecular reconstruction of sleeping beauty, a Tc1-616 like transposon from fish, and its transposition in human cells, Cell, 1997, vol. 91, pp. 501–510.PubMedGoogle Scholar
  49. Jacobsen, J.C., Bawden, C.S., Rudiger, S.R., et al., An ovine transgenic Huntington’s disease model, Hum. Mol. Genet., 2010, vol. 19, pp. 1873–1882.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jahner, D. and Jaenisch, R., Retorvirus-induced de novo methylation of flanking host sequences correlates with gene inactivity, Nature, 1985, vol. 315, pp. 594–597.PubMedCrossRefGoogle Scholar
  51. Jim, K., First USapproval for a transgenic animal drug, Nat. Biotechnol., 2009, vol. 27, no. 4, pp. 302–304.Google Scholar
  52. Kamihira, M., Ono, K., Esaka, K., et al., High-level expression of single-chain fv-fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector, J. Virol., 2005, vol. 79, no. 17, pp. 10864–10874.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Klymiuk, N., Böcker, W., Schönitzer, V., et al., First inducible transgene expression in porcine large animal models, FASEB J., 2012, vol. 26, no. 3, pp. 1086–1099.PubMedCrossRefGoogle Scholar
  54. Kodama, D., Nishimiya, D., Nishijima, K., et al., Chicken oviduct-specific expression of transgene by a hybrid ovalbumin enhancer and the Tet expression system, J. Biosci. Bioeng., 2012, vol. 113, no. 2, pp. 146–153.PubMedCrossRefGoogle Scholar
  55. Kolber-Simonds, D., Lai, L., Watt, S.R., et al., Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 19, pp. 7335–7340.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kues, W.A. and Niemann, H., Advances in farm animal transgenesis, Prev. Vet. Med., 2011, vol. 102, pp. 146–156.PubMedCrossRefGoogle Scholar
  57. Kues, W.A., Garrels, W., Mates, L., et al., Production of transgenic pigs by the Sleeping Beauty transposon system, Transgenic Res., 2010, vol. 19, p. 336.Google Scholar
  58. Kuroiwa, Y., Kasinathan, P., Choi, Y.J., et al., Cloned transchromosomic calves producing human immunoglobulin, Nat. Biotechnol., 2002, vol. 20, pp. 889–894.PubMedCrossRefGoogle Scholar
  59. Kwon, M.S., Koo, B.C., Choi, B.R., et al., Generation of transgenic chickens that produce bioactive human granulocyte- colony stimulating factor, Mol. Reprod. Dev., 2008, vol. 75, pp. 1120–1126.PubMedCrossRefGoogle Scholar
  60. Kwon, S.C., Choi, J.W., Jang, H.J., et al., Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white, Biol. Reprod., 2010, vol. 82, pp. 1057–1064.PubMedCrossRefGoogle Scholar
  61. Lai, L., Kolber-Simonds, D., Park, K.W., et al., Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning, Science, 2002, vol. 295, no. 5557, pp. 1089–1092.PubMedCrossRefGoogle Scholar
  62. Lassnig, C. and Mueller, M., Disease-resistant transgenic animals, in Sustainable Food Production, Christou, P. et al., Eds., Springer Science + Business Media New York, 2013, pp. 747–760. doi 10.1007/978-1-4614-5797-.CrossRefGoogle Scholar
  63. Lee, S., Park, H., Kong, I., and Wang, Z., 30 a transcription activatorlike effector nuclease (Talen)-mediated universal gene knock-in strategy for mammary glandsspecific expression of recombinant proteins in dairy cattle, Reprod. Fertil. Dev., 2013, vol. 26, p. 129.CrossRefGoogle Scholar
  64. Lillico, S.G., Sherman, A., Mcgrew, M.J., et al., Oviductspecific expression of two therapeutic proteins in transgenic hens, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 6, pp. 1771–1776.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Luo, Y., Lin, L., Bolund, L., Jensen, T.G., and Sørensen, C.B., Genetically modified pigs for biomedical research, J. Inherit. Metab. Dis., 2012, vol. 35, no. 4, pp. 695–713.PubMedCrossRefGoogle Scholar
  66. Maione, B., Lavitrano, M., Spadatora, C., and Kiessling, A.A., Sperm-mediated gene transfer in mice, Mol. Reprod. Dev., 1998, vol. 50, pp. 406–409.PubMedCrossRefGoogle Scholar
  67. Mali, P., Yang, L., Esvelt, K.M., et al., RNA-guided human genome engineering via Cas9, Science, 2013, vol. 339, pp. 823–826.PubMedPubMedCentralCrossRefGoogle Scholar
  68. McCreath, K.J., Howcroft, J., Campbell, K.H., et al., Production of gene-targeted sheep by nuclear transfer from cultured somatic cells, Nature, 2000, vol. 405, pp. 1066–1069.PubMedCrossRefGoogle Scholar
  69. McGrew, M.J., Sherman, A., Ellard, F.M., et al., Efficient production of germline transgenic chickens using lentiviral vectors, EMBO Rep., 2004, vol. 5, pp. 728–733.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Melo, E.O., Canavessi, A.M., Franco, M.M., and Rumpf, R., Animal transgenesis: State of the art and applications, J. Appl. Genet., 2007, vol. 48, no. 1, pp. 47–61.PubMedCrossRefGoogle Scholar
  71. Miller, J.C., Tan, S., Qiao, G., et al., A TALE nuclease architecture for efficient genome editing, Nat. Biotechnol., 2011, vol. 29, no. 2, pp. 143–148.PubMedCrossRefGoogle Scholar
  72. Miyahara, D., Mori, T., Makino, R., et al., Culture conditions for maintain propagation, long-term survival and germline transmission of chicken primordial germ cell-like cells, J. Poult. Sci., 2014, vol. 51, pp. 87–95.CrossRefGoogle Scholar
  73. Moghaddassi, S., Eyestone, W., and Bishop, C.E., TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin, PLoS One, 2014, vol. 9, no. 2, p. e89631.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mozdziak, P.E. and Petitte, J.N., Status of transgenic chicken models for developmental biology, Dev. Dyn., 2004, vol. 229, pp. 414–421.PubMedCrossRefGoogle Scholar
  75. Mozdziak, P.E., Borwornpinyo, S., McCoy, D.W., and Petitte, J.N., Development of transgenic chickens expressing bacterial betagalactosidase, Dev. Dyn., 2003, vol. 226, pp. 439–445.PubMedCrossRefGoogle Scholar
  76. Muramatsu, T., Mizutani, Y., Ohmori, Y., and Okumura, J., Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo, Biochem. Biophys. Res. Commun., 1997, vol. 230, pp. 376–380.PubMedCrossRefGoogle Scholar
  77. Nakamura, Y., Kagami, H., and Tagami, T., Development, differentiation and manipulation of chickengerm cells, Dev. Growth Differ., 2013, vol. 55, pp. 20–40.PubMedCrossRefGoogle Scholar
  78. Nemudryi, A.A., Valetdinova, K.R., and Medvedev, S.P., et al., Genome editing systems TALEN and CRISPR/Cas as tools of discovery, Acta Nat., 2014, vol. 6, no. 3 (22), pp. 20–42.Google Scholar
  79. Ni, W., Qiao, J., Hu, S., et al., Efficient gene knockout in goats using CRISPR/Cas9 system, PLoS One, 2014, vol. 9, no. 9, p. e106718. doi 10.1371/journal.pone..PubMedPubMedCentralCrossRefGoogle Scholar
  80. Palmiter, R., Sandgren, E., Avarbock, M., et al., Heterologous introns can enhance expression of transgenes in mice, Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 88, pp. 478–482.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Palmiter, R.D., Brinster, R.L., Hammer, R.E., et al., Dramatic growth of mice that develop from eggs micro-injected with metallothionein-growth hormone fusion gene, Nature, 1982, vol. 300, pp. 611–615.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Perry, A.C., Rothman, A., Heras de las, J.I., et al., Efficient metaphase II transgenesis with different transgene archetypes, Nat. Biotechnol., 2001, vol. 19, pp. 1071–1073.PubMedCrossRefGoogle Scholar
  83. Perry, A.C.F., Wakayama, T., Kishikawa, H., et al., Mammalian transgenesis by intracytoplasmic sperm injection, Science, 1999, vol. 284, pp. 1180–1183.PubMedCrossRefGoogle Scholar
  84. Phelps, C.J., Koike, C., Vaught, T.D., et al., Production of alpha 1,3-galactosyltransferase-deficient pigs, Science, 2003, vol. 299, no. 5605, pp. 411–414.PubMedCrossRefGoogle Scholar
  85. Porteus, M.H. and Carroll, D., Gene targeting using zinc finger nucleases, Nat. Biotech, 2005, vol. 23, pp. 967–973.CrossRefGoogle Scholar
  86. Pursel, V.G., Hammer, R.E., Bolt, D.J., et al., Integration, expression and germ-line transmission of growth-related genes in pigs, J. Reprod. Fertil., 1990, vol. 41, suppl., pp. 77–87.Google Scholar
  87. Raju, T.S., Briggs, J.B., Borge, S.M., and Jones, A.J., Species-specific variation in glycosylation of IgG: Evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics, Glycobiology, 2000, vol. 10, pp. 477–486.PubMedCrossRefGoogle Scholar
  88. Rapp, J.C., Harvey, A.J., Speksnijder, G.L., et al., Biologically active human interferon a-2b produced in the egg white of transgenic hens, Transgenic Res., 2003, vol. 12, pp. 569–575.PubMedCrossRefGoogle Scholar
  89. Renner, S., Fehlings, C., Herbach, N., et al., Glucose intolerance and reduced proliferation of pancreatic betacells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function, Diabetes, 2010, vol. 59, pp. 1228–1238.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rexroad, C.E., Hammer, R.E., Behringer, R.R., et al., Insertion, expression and physiology of growth-regulating genes in ruminants, J. Reprod. Fertil., 1990, vol. 41, suppl., pp. 119–124.Google Scholar
  91. Rexroad, C.E., Hammer, R.E., Bolt, D.J., et al., Production of transgenic sheep with growth-regulating genes, Mol. Reprod. Dev., 1989, vol. 1, no. 3, pp. 164–169.PubMedCrossRefGoogle Scholar
  92. Richt, J.A., Kasinathan, P., Hamir, A.N., et al., Production of cattle lacking prion protein, Nat. Biotechnol., 2007, vol. 25, pp. 132–138.PubMedCrossRefGoogle Scholar
  93. Ritchie, W.A., King, T., Neil, C., et al., Transgenic sheep designed for transplantation studies, Mol. Reprod. Dev., 2009, vol. 76, pp. 61–64.PubMedCrossRefGoogle Scholar
  94. Rogers, C.S., Stoltz, D.A., Meyerholz, D.K., et al., Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs, Science, 2008, vol. 321, pp. 1837–1841.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Savchenkova, I.P., Zinovieva N.A., Bulla I., and Brem, G., Embryonic stem cells, their genetic modification by homologous recombination and the use in the production of transgenic animals, Usp. Sovrem. Biol., 1996, vol. 116, no. 1, pp. 78–91.Google Scholar
  96. Schellander, K., Peli, J., Small, F., and Brem, G., Artificial insemination in cattle with DNA-treated sperm, Anim. Biotechnol., 1995, vol. 6, pp. 41–50.CrossRefGoogle Scholar
  97. Schnieke, A., Kind, A., Ritchie, W., et al., Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts, Science, 1997, vol. 278, pp. 2130–2133.PubMedCrossRefGoogle Scholar
  98. Scott, B.B. and Lois, C., Generation of tissue-specific transgenic birds with lentiviral vectors, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 45, pp. 16443–16447.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Scott, B.B., Velho, T.A., Sim, S., and Lois, C., Applications of avian transgenesis, ILAR J., 2010, vol. 51, no. 4, pp. 353–61.PubMedCrossRefGoogle Scholar
  100. Serov, O.L., Transgenic animals: Fundamental and applied aspects, Russ. J. Genet., Appl. Res., 2014, vol. 4, no. 3, pp. 200–207.CrossRefGoogle Scholar
  101. Shimizu, M., Losos, J.K., and Gibbins, A.M., Analysis of an approach to oviduct-specific expression of modified chicken lysozyme genes, Biochem. Cell Biol., 2005, vol. 83, no. 1, pp. 49–60.PubMedCrossRefGoogle Scholar
  102. Shumakov, V. and Tonevitskii, A., Xenotransplantation: Scientific and ethical problems, Chelovek, 1999, no. 6. http://vivovoco.astronet.ru/VV/PAPERS/MEN/TRANSPLANT. HTM. Cited April 14, 2015.Google Scholar
  103. Simons, J., Wilmut, I., Clark, A., et al., Gene transfer into sheep, Bio/Technol., 1988, vol. 6, pp. 179–183.CrossRefGoogle Scholar
  104. Singina, G.N., Lopukhov, A.V., Zinovieva, N.A., et al., Optimization of parameters of enucleation and fusion of the oocyte and somatic cell upon receipt of cloned mammalian embryos, S. Biol., 2013, no. 2, pp. 46–51.Google Scholar
  105. Singina, G.N., Volkova, N.A., Bagirov, V.A., and Zinovieva, N.A., Cryobanks of somatic cells as a promising way to preserve animal genetic resources, S-kh. Biol., 2014, no. 6, pp. 3–14.Google Scholar
  106. Smith, C.A., Roeszler, K.N., and Sinclair, A.H., Robust and ubiquitous GFP expression in a single generation of chicken embryos using the avian retroviral vector, RCASBP, Differentiation, 2009, vol. 77, no. 5, pp. 473–82.PubMedCrossRefGoogle Scholar
  107. Sommer, J.R., Estrada, J.L., Collins, E.B., et al., Production of ELOVL4 transgenic pigs: A large animal model for Stargardt-like macular degeneration, Br. J. Ophthalmol., 2011, vol. 95, no. 12, pp. 1749–1754.PubMedCrossRefGoogle Scholar
  108. Sperandio, S., Lulli, V., Bacci, M., et al., Sperm mediated DNA transfer in bovine and swine species, Anim. Biotechnol., 1996, vol. 7, pp. 59–77.CrossRefGoogle Scholar
  109. Tan, W., Carlson, D.F., Lancto, C.A., et al., Efficient nonmeiotic allele introgression in livestock using custom endonucleases, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 41, pp. 16526–16531.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tyack, S.G., Jenkins, K.A., O’Neil, T.E., et al., A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells, Transgenic Res., 2013, vol. 22, pp. 1257–1264.PubMedCrossRefGoogle Scholar
  111. Volkova, N.A., Volkova, L.A., and Fomin, I.K., et al., Integration and expression of marker genes in chicken embryos using retrovirus expressing vectors), S-kh. Biol., 2013, no. 2, pp. 58–61.Google Scholar
  112. Volkova, N.A., Volkova, L.A., and Fomin, I.K., et al., Optimization of conditions for introduction of recombinant DNA in spermatogenic cells of the testes of cocks in vivo), S-kh. Biol., 2012, no. 6, pp. 56–61.Google Scholar
  113. Wang, S., Sun, X., Ding, F., et al., Removal of selectable marker gene from fibroblast cells in transgenic cloned cattle by transient expression of Cre recombinase and subsequent effects on recloned embryo development, Theriogenology, 2009, vol. 72, pp. 535–541.PubMedCrossRefGoogle Scholar
  114. Wang, Y., Zhao, S., Bai, L., et al., Expression systems and species used for transgenic animal bioreactors, BioMed Res. Int., 2013, vol. 2013. doi doi 10.1155/2013/.Google Scholar
  115. Ward, K.A., Nancarrow, C.D., Murray, J.D., et al., The physiological consequences of growth hormone fusion gene expression in transgenic sheep, J. Cell Biochem., 1989, vol. 13, p. 164.Google Scholar
  116. Weiss, E.H., Lilienfeld, B.G., Muller, S., et al., HLA-E/human beta2-microglobulin transgenic pigs: Protection against xenogeneic human anti-pig natural killer cell cytotoxicity, Transplantation, 2009, vol. 87, pp. 35–43.PubMedCrossRefGoogle Scholar
  117. Whitelaw, C.B., Radcliffe, P.A., Ritchie, W.A., et al., Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector, FEBS Lett., 2004, vol. 571, pp. 233–236.PubMedCrossRefGoogle Scholar
  118. Whitworth, K.M., Lee, K., Benne, J.A., et al., Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos, Biol. Reprod., 2014, vol. 91, no. 3, pp. 78–90.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wiedenheft, B., Sternberg, S.H., and Doudna, J.A., RNAguided genetic silencing systems in bacteria and archaea, Nature, 2012, vol. 482, pp. 331–338.PubMedCrossRefGoogle Scholar
  120. Wieghart, M., Hoover, J.L., McGrane, M.M., et al., Production of transgenic pigs harbouring a rat phosphoenolpyruvate carboxykinase-bovine growth hormone fusion gene, J. Reprod. Fertil., 1990, vol. 41, suppl., pp. 89–96.Google Scholar
  121. Wine, J.J., The development of lung disease in cystic fibrosis pigs, Sci. Transl. Med., 2010, vol. 2, no. 29, p. 29ps20.CrossRefGoogle Scholar
  122. Xin, J., Yang, H., Fan, N., et al., Highly efficient generation of GGTA1 biallelic knockout inbred minipigs with TALENs, PLoS One, 2013, vol. 8, no. 12, p. e84250.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zinovieva, N.A. and Ernst, L.K., Problemy biotekhnologii i selektsii sel’skokhozyaistvennykh zhivotnykh (Problems of Biotechnology and Breeding of Farm Animals), Dubrovitsy: VIZh, 2006, 2nd. ed.Google Scholar
  124. Zinovieva, N.A., Melerzanov, A.V. and Petersen, E.V., et al., The use of transgenic GAL-KO pigs in xenotransplantation: Problems and prospects, S-kh. Biol., 2014, no. 2, pp. 42–49.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. A. Zinovieva
    • 1
  • N. A. Volkova
    • 1
  • V. A. Bagirov
    • 1
  • G. Brem
    • 2
  1. 1.Ernst Institute for Animal HusbandryDubrovitsy, Moscow oblastRussia
  2. 2.Institute for Animal Breeding and Genetics, VMUViennaAustria

Personalised recommendations