Advertisement

SCID mice as an animal model to evaluate the efficacy of antismallpox drugs

  • K. A. Titova
  • Al. A. Sergeev
  • A. S. Kabanov
  • L. E. Bulychev
  • Ar. A. Sergeev
  • D. O. Gorbatovskaya
  • A. S. Zamedyanskaya
  • L. N. Shishkina
  • O. S. Taranov
  • V. V. Omigov
  • E. L. Zavjalov
  • A. P. Agafonov
  • A. N. Sergeev
Article

Abstract

There is currently no animal model to evaluate the preventive efficacy of antiviral drugs for the treatment of smallpox in human patients with a weak immune system. Therefore, the possibility of using outbred severe combined immunodeficiency (SCID) mice as an animal model was examined by electron microscopy and virological, histological, and statistical methods. There were no clinical signs of disease after the intranasal infection of mice with the variola virus (VARV) at a dose of 5.2 log10 PFU (plaque forming unit). At the same time, the median infective dose (ID50) of VARV estimated by registering the presence of the virus in the lungs of animals four days after infection was 3.5 log10 PFU, and thus, was close to that theoretically determined in human patients by identifying the clinical picture of the disease. The reproduction of the virus was detected only in the respiratory organs of mice infected with VARV at a dose of 5.2 log10 PFU (50 ID50). The values of the VARV concentration in the lungs and nose were similar to those observed in human patients and well-known animal models such as Macaca cynomolgus and ICR mice respiratorily infected with almost the same doses of VARV. The known animal models were not shown to be significantly different from SCID mice in terms of the duration of the presence of the virus in the lungs. Moreover, the inflammatory and necrotic pathomorphological changes observed in the respiratory organs of SCID mice were similar to those occurring in other animal models and human patients. The use of SCID mice for evaluating the preventive efficacy of the NIOCH-14 and ST-246 antiviral drugs led to the results agreeing well with the previously reported data. Thus, SCID mice may be used as an experimental animal model for simulating smallpox to develop antiviral drugs for the treatment of human patients with a severe immunosuppressive state.

Keywords

variola virus SCID mice animal model intranasal infection 50% infective dose viral dissemination pathological lesions preventive efficacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, T.R., Rippin, S.R., Opsitnick, E., Burns, C.J., Pevear, D.C., Collett, M.S., Rhodes, G., Tohan, S., Huggins, J.W., Baker, R.O., Kern, E.R., Keith, K.A., Dai, D., Yang, G., Hruby, D., et al., N-(3,3a,4,4a,5,5a,6,6a-octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2-(1H)-yl)carboxamides: Identification of novel orthopoxvirus egress inhibitors, J. Med. Chem., 2007, vol. 50, no. 7, pp. 1442–1444.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Belizário, J.E., Immunodeficient mouse models: An overview, Open Immunol. J., 2009, vol. 2, pp. 79–85.CrossRefGoogle Scholar
  3. Cann, J.A., Jahrling, P.B., Hensley, L.E., and Wahl-Jensen, V., Comparative pathology of smallpox and monkeypox in man and macaques, J. Comp. Path., 2013, vol. 148, pp. 6–21.CrossRefPubMedGoogle Scholar
  4. Hahon, N. and Wilson, B.J., Pathogenesis of variola in Macaca irus monkeys, Amer. J. Hyg., 1960, vol. 71, pp. 69–80.PubMedGoogle Scholar
  5. Huggins, J., Goff, A., Hensley, L., Mucker, E., Shamblin, J., Wlazlowski, C., Johnson, W., Chapman, J., Larsen, T., Twenhafel, N., Karem, K., Damon, I.K., Byrd, C.M., Bolken, T.C., Jordan, R., and Hruby, D., Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246, Antimicrob. Agents Chemother., 2009, vol. 53, no. 6, pp. 2620–2625.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Jahrling, P.B., Hensley, L.E., Martinez, M.J., LeDuc, J.W., Rubins, K.H., Relman, D.A., and Huggins, J.W., Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 42, pp. 15197–15200.CrossRefGoogle Scholar
  7. Kaptsova, T.I., Development of experimental models of smallpox, Cand. Sci. (Med.) Dissertation, Moscow, 1967.Google Scholar
  8. Leparc-Goffart, I., Poirier, B., Garin, D., Tissier, M.-H., Fuchs, F., and Crance, J.-M., Standartization of a neutralizing anti-vaccinia antibodies titration method: An essential step for titration of vaccinia immunoglobulins and smallpox vaccines evaluation, J. Clin. Virol., 2005, vol. 32, pp. 47–52.CrossRefPubMedGoogle Scholar
  9. Marennikova, S.S. and Shchelkunov, S.N., Orthopoxviruses Pathogenic for Humans, New York: Springer, 2005.Google Scholar
  10. Mayr, A. and Herrlich, A., Zuchting des Variolavirus in der infantilen Maus, Arch. Gesamte. Virusforsch., 1960, vol. 10, no. 2, pp. 226–235.CrossRefPubMedGoogle Scholar
  11. Mucker, E.M., Goff, A.J., Shamblin, J.D., Grosenbach, D.W., Damon, I.K., Mehal, J.M., Holman, R.C., Carroll, D., Gallardo, N., Olson, V.A., Clemmons, C.J., Hudson, P., and Hruby, D.E., Efficacy of Tecovirimat (ST-246) in nonhuman primates infected with variola virus (smallpox), Antimicrob. Agents Chemother., 2013, vol. 57, no. 12, pp. 6246–6253.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Murti, B.R. and Shrivastav, J.B., A study biological behavior of variola virus. II. Experimental inoculation of laboratory animals, Indian J. Med. Sci., 1957, vol. 11, no. 8, pp. 580–587.PubMedGoogle Scholar
  13. National Research Council: Guidelines on Laboratory Animal Care and Use, Washington: The National Academies Press, 2011, 8th ed.Google Scholar
  14. Sarkar, J.K., Mitra, A.C., Mukherjee, M.K., De, S.K., and Guha Mazumdar, D., Virus excretion in smallpox. I. Excretion in the throat, urine and conjunctive of patients, Bull. WHO, 1973, vol. 48, pp. 517–522.PubMedPubMedCentralGoogle Scholar
  15. Sergeev, A.A., Kabanov, A.S., Bulychev, L.E., Sergeev, A.A., Taranov, O.S., Titova, K.A., Pyankov, O.V., Zamedyanskaya, A.S., Gorbatovskaya, D.O., Agafonov, A.P., Sergeev, A.N., and Shishkina, L.N., RF Patent no. 2522483, Byull. Izobret., 2014, no. 20.Google Scholar
  16. Sergeev, A., Kabanov, A.S., Bulychev, L.E., Sergeev, A.A., Pyankov, O.V., Bodnev, S.A., Galahova, D.O., Zamedyanskaya, A.S., Titova, K.A., Glotov, A.G., Taranov, O.S., Omigov, V.V., Shishkina, L.N., Agafonov, A.P., and Sergeev, A.N., The possibility of using the ICR mouse as an animal model to assess anti-monkeypox drug efficacy, Transbound. Emerg. Dis., 2015a. doi 10.1111/tbed.12323Google Scholar
  17. Sergeev, A., Kabanov, A.S., Bulychev, L.E., Sergeev, A.A., Pyankov, O.V., Bodnev, S.A., Galahova, D.O., Zamedyanskaya, A.S., Titova, K.A., Glotova, T.I., Taranov, O.S., Omigov, V.V., Shishkina, L.N., Agafonov, A.P., and Sergeev, A.N., Using the ground squirrel (Marmota bobak) as an animal model to assess monkeypox drug efficacy, Transbound. Emerg. Dis., 2015b. doi 10.1111/tbed.12364Google Scholar
  18. Shishkina, L.N., Sergeev, A.N., Agafonov, A.P., Sergeev, A.A., Kabanov, A.S., Bulychev, L.E., Sergeev, A.A., Gorbatovskaya, D.O., Pyankov, O.V., Bormatov, N.I., Shchukin, G.I., Selivanov, B.A., and Tikhonov, A.Ya., RF Patent no. 2543338, Byull. Izobret., 2015, no. 6.Google Scholar
  19. Smith, S.K., Olson, V.A., Karem, K.L., Jordan, R., Hruby, D.E., and Damon, I.K., In vitro efficacy of ST246 against smallpox and monkeypox, Antimicrob. Agents Chemother., 2009, vol. 53, pp. 1007–1012.CrossRefPubMedGoogle Scholar
  20. Wahl-Jensen, V., Cann, J.A., Rubins, K.H., Huggins, J.W., Fisher, R.W., Johnson, A.J., de Kok-Mercado, F., Larsen, T., Raymond, J.L., Hensley, L.E., and Jahrling, P.B., Progression of pathogenic events in cynomolgus macaques infected with variola virus, PLoS One, 2011, vol. 6.Google Scholar
  21. Zaks, L., Statisticheskoe otsenivanie (Statistical Estimation), Moscow, 1976.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. A. Titova
    • 1
  • Al. A. Sergeev
    • 1
  • A. S. Kabanov
    • 1
  • L. E. Bulychev
    • 1
  • Ar. A. Sergeev
    • 1
  • D. O. Gorbatovskaya
    • 1
  • A. S. Zamedyanskaya
    • 1
  • L. N. Shishkina
    • 1
  • O. S. Taranov
    • 1
  • V. V. Omigov
    • 1
  • E. L. Zavjalov
    • 2
  • A. P. Agafonov
    • 1
  • A. N. Sergeev
    • 1
  1. 1.State Research Center of Virology and Biotechnology VectorKoltsovoRussia
  2. 2.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations