Proton magnetic resonance spectroscopy of neurometabolites in the hippocampi of aggressive and tame male rats

  • R. G. Gulevich
  • A. E. Akulov
  • S. G. Shikhevich
  • R. V. Kozhemyakina


The amounts of major neurometabolites were studied by proton magnetic resonance spectrometry in the dorsal hippocampus of adult male rats of populations after a long period of selection for an increase and absence of an aggressive-fearful response to humans and of unselected vivarium-kept rats. Tame and unselected males showed no significant differences in the percentages of any neurometabolites studied with regard to their total amount. The differences in the proportions of some neurometabolites were found in aggressive vs. tame and in aggressive vs. unselected animals. Tame animals showed higher proportions of GABA, N-acetylaspartate (NAA), and choline derivatives and a lower proportion of phosphorylethanolamine than aggressive ones. It is likely that the elevated content of GABA, one of the main inhibitory neurotransmitters in the brain, lowers the excitation intensity in tame rats as compared to aggressive ones. In comparison to the unselected animals, aggressive rats demonstrated higher proportions of glutamine, aspartate, phosphorylethanolamine, and lactate and lower proportions of NAA and creatine + phosphocreatine. Aspartate is one of the main excitement transmitters, and its elevated percentage in the dorsal hippocampi of aggressive rats may favor more intense excitation than in unselected rats. In addition, the elevated proportion of glutamine in aggressive rats vs. tame rats may be indicative of (1) a metabolic disturbance in the glutamate–glutamine cycle, which links the neural and glial cells, and (2) a decrease in the activity of glutaminase, the enzyme converting glutamine to glutamic acid (GABA precursor). The reduced NAA proportion, together with an elevated proportion of glutamine in aggressive rats points to an impaired energy metabolism in comparison to unselected animals. The differences in the neurometabolite patterns between the hippocampi of the male rats of the unselected and aggressive populations suggest the existence of different neurobiological mechanisms governing the manifestation of aggression.


proton magnetic resonance spectroscopy aggression rats GABA hippocampus N-acetylaspartate selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, F.W., Shchepina, O., Winter, C., Römpler, H., Teupser, D., Palme, R., Ceglarek, U., Kratzsch, J., Sohr, R., Trut, L.N., Thiery, J., Morgenstern, R., Plyusnina, I.Z., Schoneberg, T., and Pääbo, S., Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans, Horm. Behav., 2008, vol. 5, pp. 413–421.CrossRefGoogle Scholar
  2. Barros, L.F., Metabolic signaling by lactate in the brain, Trends Neurosci., 2013, vol. 36, no. 7, pp. 369–404. doi 10.1016/j.tins.2013.04.002CrossRefGoogle Scholar
  3. Critchley, H., Simmons, A., Daly, E., Russel, A., van Amelsvoort, T., Robertson, D., Glover, A., and Murphy, D., Prefrontal and medial temporal correlates of repetitive violence to self and other, Biol. Psychiat., 2000, vol. 47, pp. 928–934.CrossRefPubMedGoogle Scholar
  4. Dingledine, R. and McBain, C., Glutamate and Aspartate are Major Excitatory Transmitters in the Brain. Basic Neurochemistry: Molecular, Cellular and Medical Aspects, Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., and Uhler, M.D., Eds., Philadelphia, 1999.Google Scholar
  5. Fish, E.W., de Bold, J.F., and Miczek, K.A., Aggressive behavior as a reinforcer in mice: Activation by allopregnenalone, Psychopharmacology, 2002, vol. 163, nos. 3–4, pp. 459–466.CrossRefPubMedGoogle Scholar
  6. Gerbek, Yu.E., Oskina, I.N., Gulevich, R.G., and Plyusnina, I.Z., Influence of maternal methyl-rich diet on expression of glucocorticoid receptor gene in the hippocampus of rats selected for behavior, Tsitol. Genet., 2010, vol. 44, no. 2, pp. 45–52.PubMedGoogle Scholar
  7. Govindaraju, V., Young, K., and Maudsley, A.A., Proton NMR chemical shifts and coupling constant for brain metabolites, NMR Biomed., 2000, vol. 13, pp. 129–153.CrossRefPubMedGoogle Scholar
  8. Gregg, T.R. and Siegel, A., Brain structures and neurotransmitters regulating aggression in cats: Implications for human aggression, Progr. Neuropsychopharmacol. Biol. Psychiatry, 2001, vol. 25, no. 1, pp. 91–140.CrossRefGoogle Scholar
  9. Ham, B., Sung, Y., Kim, N., Kim, S., Kim, J., Kim, D., Lee, J., Kim, J., Yoon, S., and Lyoo, I., Decreased GABA levels in anterior cingulated and basal ganglia in medicated subjects with panic disorder: A proton magnetic resonance spectroscopy (1H MRS) study, Progr. Neuropsychopharmacol. Biol. Psychiatry, 2007, vol. 31, no. 2, pp. 403–411.CrossRefGoogle Scholar
  10. Hamshere, M., Stergiakouli, E., Langley, K., Martin, J., Holmans, pp., Kent, L., Owen, M., Gill, M., Thapar, A., O’Donovan, M., and Craddock, N., Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia, Brit. J. Psychiatry, 2013, vol. 203, no. 2, pp. 107–111. doi 10.1192/bjp.bp.112.117432CrossRefGoogle Scholar
  11. Huang, Y., Chen, W., Li, Y., Wu, X., Shi, X., and Geng, D., Effect of antidepressant treatment on N-acetyl aspartate and choline levels in the hippocampus and thalami of poststroke depression patients: A study using 1H magnetic resonance spectroscopy, Psychiat. Res., Neuroimaging, 2010, vol. 182, pp. 48–52. doi 10.1016/j.pscychresns.2009.11.009CrossRefGoogle Scholar
  12. Jenkins, B., Klivenyi, P., Kustermann, E., Andreassen, O., Ferrante, R., Rosen, B., and Beal, M., Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice, J. Neurochem., 2000, vol. 74, no. 5, pp. 2108–2119. doi 10.1046/j.1471-4159.2000.0742108.xCrossRefPubMedGoogle Scholar
  13. Jinno, S., Topographic differences in adult neurogenesis in the mouse hippocampus: A stereology-based study using endogenous markers, Hippocampus, 2011, vol. 21, no. 5, pp. 467–480. doi 10.1002/hipo.20762CrossRefPubMedGoogle Scholar
  14. Khoruzhik, C.A., Magnetic resonance spectroscopy in brain tumors, Onkol. Zh., 2007, vol. 3, pp. 51–62.Google Scholar
  15. Killeen, P., Russel, V., and Sergeant, J., A behavioral neuroenergetics theory of ADHD, Neurosci. Biobehav. Rev., 2013, vol. 37, no. 4, pp. 625–657. doi 10.1016/J.neubiorev. 2013.02.011CrossRefPubMedGoogle Scholar
  16. Kohl, C., Riccio, O., Grosse, J., Zanoletti, O., Fournier, C., Schmidt, M.V., and Sandi, C., Hippocampal neuroligin-2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats, PLoS One, 2013, vol. 8, no. 2. doi 10.1371/journal.pone.0056871Google Scholar
  17. Li-Byarlay, H., Rittschof, C., Massey, J., Pittendrigh, B., and Robinson, G., Socially responsive effects of brain oxidative metabolism on aggression, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 34, pp. 12533–12537. doi 10.1073/pnas.1412306111CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lieving, L.V., Cherek, D.R., Lane, S.D., Tcheremissine, O.V., and Nouvion, S.O., Effect of acute tiagabine administration on aggressive responses of adult male parolees, J. Psychopharmacol., 2008, vol. 22, no. 2, pp. 144–152.CrossRefPubMedGoogle Scholar
  19. Maddock, R., Buonocore, M., Copeland, L., and Richards, A., Elevated brain lactate responses to neural activation in panic disorder: A dynamic 1H MRS study, Mol. Psychiatry, 2009, vol. 14, pp. 537–545. doi 10.1038/ Scholar
  20. Moffett, J., Ross, B., Arun, P., Madhavarao, C., and Namboodiri, A., N-acetylaspartate in the CNS: From neurodiagnostic to neurobiology, Progr. Neurobiol., 2007, vol. 81, no. 2, pp. 89–131.CrossRefGoogle Scholar
  21. Monuteaux, M., Biederman, J., Doyle, A., Mick, E., and Faraone, S., Genetic risk for conduct disorder symptom subtypes in an ADHD sample: Specificity to aggressive symptoms, J. Am. Acad. Child Adolescent Psychiatry, 2009, vol. 48, no. 7, pp. 757–764. doi 10.1097/CHI.0b013e3181a5661bCrossRefGoogle Scholar
  22. Moreno, A., Ross, B., and Blum, S., Direct determination of the N-acetyl-l-aspartate synthesis rate in the human brain by 13C MRS and [13C]glucose infusion, J. Neurochem., 2001, vol. 27, no. 1, pp. 347–350. doi 10.1046/j.1471-4159.2001.00282.xCrossRefGoogle Scholar
  23. Moshkin, M.P., Akulov, A.E., Petrovski, D.V., Saik, O.V., Petrovskiy, E.D., Savelov, A.A., and Koptyug, I.V., Proton magnetic resonance spectroscopy of brain metabolic shifts induced by acute administration of 2-deoxy-d-glucose and lipopolysaccharides, NMR Biomed., 2014, vol. 27, no. 4, pp. 399–405. doi 10.1002/nbm.3074CrossRefPubMedGoogle Scholar
  24. Naumenko, E.V., Popova, N.K., Nikulina, E.M., Dygalo, N.N., Shishkina, G.T., Borodin, P.M., and Markel, A.L., Behavior, adrenocortical activity, and brain monoamines in Norway rats selected for reduced aggressiveness towards man, Pharmacol. Biochem. Behav., 1989, vol. 33, pp. 85–91.CrossRefPubMedGoogle Scholar
  25. Oberg, J., Spenger, C., Wang, F., Andersson, A., Westman, E., Scoglund, P., Sunnemark, D., Norinder, U., Klason, T., Wahlund, L., and Lindberg, M., Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice, Neurobiol. Aging, 2008, vol. 29, no. 9, pp. 1423–1433.CrossRefPubMedGoogle Scholar
  26. Oskina, I.N., Gerbek, Yu.E., Shikhevich, S.G., Plyusnina, I.Z., and Gulevich, R.G., Changes in the hypothalamic-pituitary-adrenal axis and immune systems in the selection of animals for domestication behavior, Inf. Vestn. VOGiS, 2008, vols. 1–2, pp. 39–49.Google Scholar
  27. Plyusnina, I.Z. and Oskina, I.N., Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans, Physiol. Behav., 1997, vol. 61, no. 3, pp. 381–385.CrossRefPubMedGoogle Scholar
  28. Plyusnina, I.Z., Shchepina, O., Oskina, I., and Trut, L., Some features of learning in the Morris water test in rats selected for responses to humans, Neurosci. Behav. Physiol., 2008, vol. 38, no. 5, pp. 511–516. doi 10.1007/s11055-008-9010-9CrossRefPubMedGoogle Scholar
  29. Plyusnina, I.Z. and Solov’eva, M.Yu., Intraspecific intermale aggression in tame and aggressive gray rats, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2010, vol. 60, no. 2, pp. 175–183.Google Scholar
  30. Plyusnina, I.Z., Solov’eva, M.Yu., and Oskina, I.N., Effect of domestication on aggression in gray rats, Behav. Genet., 2011, vol. 41, no. 4, pp. 583–592.CrossRefPubMedGoogle Scholar
  31. Raine, A. and Yang, Y., Neural foundations to moral reasoning and antisocial behavior, Soc. Cogn. Affect. Neurosci., 2006, vol. 1, no. 3, pp. 203–213.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Signoretti, S., Marmarou, A., Tavazzi, B., Dunbar, J., Amorini, A., Lazzarino, G., and Vagnozzi, R., The protective effect of cyclosporin a upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury, J. Neurotraum., 2004, vol. 21, no. 9, pp. 1154–1167. doi 10.1089/neu.2004.21.1154CrossRefGoogle Scholar
  33. Suzuki, K., Nishimura, K., Sugihara, G., Nakamura, K., Tsuchiya, K.J., Matsumoto, K., Takebayashi, K., Isoda, H., Sakahara, H., Sugiyama, T., Tsujii, M., Takei, N., and Mori, N., Metabolite alterations in the hippocampus of high-functioning adult subject with autism, Int. J. Neuropscychopharmacol., 2010, vol. 13, pp. 529–534. doi 10.1017/S1461145709990952CrossRefGoogle Scholar
  34. Tang, F., Lane, S., Korsak, A., Paton, J., Gourine, A., Kasparov, S., and Teschemacher, A., Lactate-mediated glia-neuronal signalling in the mammalian brain, Nat. Commun., 2014, vol. 5, no. 3284. doi 10.1038/ncomms4284Google Scholar
  35. Tanti, A. and Belzung, C., Neurogenesis along the septotemporal axis of the hippocampus: Are depression and the action of antidepressants region-specific?, Neuroscience, 2013, vol. 12, no. 252, pp. 234–252.CrossRefGoogle Scholar
  36. Veenema, A.H., de Kloet, E.R., de Wilde, M.C., Roelofs, A.J., Kawata, M., Buwalda, B., Neumann, I.D., Koolhaas, J.M., and Lucassen, P.J., Differential effects of stress on adult hippocampal cell proliferation in low and high aggressive mice, J. Neuroendocrinol., 2007, vol. 19, pp. 489–498. doi 10.1111/J.1365-2826.2007.01555.xCrossRefPubMedGoogle Scholar
  37. Wintermantel, T.M., Berger, S., Greiner, E.F., and Schultz, G., Evaluation of steroid receptor function by gene targeting in mice, J. Steroid Biochem. Mol. Biol., 2005, vol. 93, nos. 2–5, pp. 107–112.CrossRefPubMedGoogle Scholar
  38. Yang, Y., Glenn, A.L., Raine, A., and Phil, D., Brain abnormalities in antisocial individuals: Implications for the law, Behav. Sci. Law, 2008, vol. 26, pp. 65–83. doi 10.1002/bsl.788CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • R. G. Gulevich
    • 1
  • A. E. Akulov
    • 1
  • S. G. Shikhevich
    • 1
  • R. V. Kozhemyakina
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations