Development of new SSR markers for homoeologous WFZP gene loci based on the study of the structure and location of microsatellites in gene-rich regions of chromosomes 2AS, 2BS, and 2DS in bread wheat

  • O. B. Dobrovolskaya
  • C. Pont
  • Yu. L. Orlov
  • J. Salse
Article

Abstract

Microsatellites, or simple sequence repeats, are widely distributed in eukaryotic genomes, including plant genomes. The peculiarities of the structure and location of the microsatellite loci determine their potential as molecular genetic markers and can influence the assumed function of microsatellites in important biological processes. The identification and study of the distribution of microsatellite loci in gene-rich genome regions of the bread wheat and the development (based on them) of new microsatellite markers are of practical interest and are important for the study of the organization of the bread wheat genome. The sequences of BAC clones that contain the homoeologous WFZP genes of the bread wheat (Triticum aestivum L.) controlling the development of the ear were the basis for the identification and localization of microsatellite loci in gene-rich regions of the 2AS, 2BS, and 2DS chromosomes. Diand trinucleotide microsatellite repeats are the most widespread in the studied sequences. The AG and GA/TC motifs prevail among the dinucleotide motifs; the dinucleotide repeats are found in noncoding gene regions, mobile elements, and nonannotated DNA sequences. Most of the trinucleotide repeats are associated with mobile genetic elements. It was found that homoeologous microsatellite loci are located either in the genes or in the nonannotated DNA sequences. The comparison of the structure of homoeologous loci demonstrated that the divergence in them is associated both with a change in the number of repeats and with nucleotide substitutions. The new microsatellite markers, which are colocalized in the genetic maps with the WFZP-A-B-D genes and can be used for marking these genes in molecular genetic studies and in breeding controlled by markers, were developed.

Keywords

microsatellite loci SSR markers BAC clone bread wheat WFZP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choulet, F., Wicker, T., Rustenholz, C., Paux, E., Salse, J., Leroy, P., Pingault, L., Sourdille, P., Couloux, A., Paux, E., Leroy, P., Mangenot, S., Guilhot, N., Le Gousis, J., Alaux, M., et al., Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces, Plant Cell, 2010, vol. 22, pp. 1686–1701. doi 10.1105/tpc.110.074187CrossRefPubMedPubMedCentralGoogle Scholar
  2. Choulet, F., Alberti, A., Theil, S., Glover, N., Barbe, V., Daron, J., Pingault, L., Sourdille, P., Couloux, A., Paux, E., Leroy, P., Guilhot, N., Le Gouis, J., Balfourier, F., Alaux A, et al., Structural and functional partitioning of bread wheat chromosome 3B, Science, 2014, vol. 345, pp. 1249721–1. doi 10.1126/science.1249721CrossRefPubMedGoogle Scholar
  3. Dobrovolskaya, O.B., Sourdille, P., Bernard, M., and Salina, E.A., Chromosome synteny of the genome of two evolutionary wheat lines, Russ. J. Genet., 2009, vol. 45, pp. 1368–1375.CrossRefGoogle Scholar
  4. Dobrovolskaya, P., Boeuf, C., Salse, J., Pont, C., Sourdille, P., Bernard, M., and Salina, E., Microsatellite mapping of Ae. speltoides and map-based comparative analysis of the S, G, and B genomes of Triticeae species, Theor. Appl. Genet., 2011, vol. 123, pp. 1145–1157. doi 10.1007/s00122-0111655-zGoogle Scholar
  5. Dobrovolskaya, O., Pont, C., Sibout, R., Martinek, P., Badaeva, E., Chosson, A., Watanabe, N., Prat, E., Gautier, N., Gautier, V., Oncet, C., Orlov, Y.L., Krasnikov, A.A., Berges, H., Salina A, et al., FRIZZY PANICLE drives supernume (T. aestivum L.), Plant Physiol., 2015, vol. 167, pp. 189–199. doi 10.1104/pp.114.250043CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dobrovoskaya, O., Martinek, P., Voylokov, A.V., Korzun, V., Röder, M.S., and Börner, A., Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale), Theor. Appl. Genet., 2009, vol. 119, pp. 867–874. doi 10.1007/ s00122-0091095-1CrossRefGoogle Scholar
  7. Erayman, M., Sandhu, D., Sidhu, D., Dilbirligi, M., Baenziger, P.S., and Gill, K.S., Demarcating gene-rich regions of the wheat genome, Nucleic Acids Res., 2004, vol. 32, pp. 3546–3565. doi 10.1093/nar/gkh639CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ganal, M.W. and Röder, M.S., Microsatellite and SNP markers in wheat breeding, in Genomics Assisted Crop Improvement, Varshney, R.K. and Tuberosa, R., Dordrecht, 2007, vol. 2.Google Scholar
  9. Grover, A., Aishwarya, V., and Sharma, P.C., Biased distribution of microsatellite motifs in the rice genome, Mol. Gen. Genom., 2007, vol. 277, pp. 469–480. doi 10.1007/s00438-006-0204-yCrossRefGoogle Scholar
  10. IWGSC (International Wheat Genome Sequencing Consortium). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, Science, 2014, vol. 345, no. 6194. doi 10.1136/science.1251788Google Scholar
  11. Kosambi, D.D., The estimation of map distances from recombination values, Ann. Eugen., 1943, vol. 12, pp. 172–175.CrossRefGoogle Scholar
  12. Lagercrantz, U., Ellegren, H., and Andersson, L., The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates, Nucleic Acids Res., 1993, vol. 21, pp. 1111–1115.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., and Newburg, L., MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations, Genomics, 1987, vol. 1, pp. 174–181.CrossRefPubMedGoogle Scholar
  14. Leonova, I.N., Röder, M.S., Kalinina, N.P., and Budashkina, E.B., Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines, Russ. J. Genet., 2008, vol. 44, no. 12, 1431–1437.CrossRefGoogle Scholar
  15. Leonova, I.N., Roder, M.S., Kalinina, N.P., and Budashkina, E.B., Geneticheskii analiz i lokalizatsiya lokusov, kontroliruyushchikh ustoichivost' introgressivnykh linii Triticum aestivum Triticum timopheevii k listovoi rzhavchine, Genetika, 2008, vol. 44, pp. 1652–1659.Google Scholar
  16. Li, Y.-C., Korol, A.B., Beiles, A., and Nevo, E., Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review, Mol. Ecol., 2002, vol. 11, pp. 2453–2465. doi 10.1046/j.1365-294X. 2002.01643xCrossRefPubMedGoogle Scholar
  17. Maia, L.C.D., Palmieri, D.A., Souza, V.Q.D., and Kopp, M.M., and Costa de Oliveira, A., SSR locator: Tool for simple sequence repeat discovery integrated with primer design and PCR simulation, Int. J. Plant Genomics, 2008. doi 10.1155/2008/412696Google Scholar
  18. Morgante, M., Hanafey, M., and Powell, W., Microsatellites are preferentially associated with nonrepetitive dna in plant genomes, Nat. Genet., 2002, vol. 30, pp. 194–200. doi 10.1038/ng822CrossRefPubMedGoogle Scholar
  19. Nicot, N., Chiquet, V., Gandon, B., Amilhat, L., Legeai, F., Leroy, F., Bernard, M., and Sourdille, P., Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs), Theor. Appl. Genet., 2004, vol. 109, pp. 800–805. doi 10.1007/s00122-0041685-xCrossRefPubMedGoogle Scholar
  20. Paux, E., Sourdille, P., Salse, J., Saintenac, C., Choulet, F., Leroy, P., Korol, A., Michalak, M., Kianian, S., Spielmeyer, W., Lagudah, E., Somers, D., Kilian, A., Alaux, M., and Vautrin, S., A physical map of the 1gigabase bread wheat chromosome 3B, Science, 2008, vol. 322, pp. 101–104. doi 10.1126/science.1161847CrossRefPubMedGoogle Scholar
  21. Ramsay, L., Macaulay, M., Cradle, L., Morgante, M., Ivanissevich, S.D., Maestri, E., Powell, W., and Waugh, R., Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley, Plant J., 1999, vol. 17, pp. 415–425. doi 10.1046/j.1365313X.1999.00392xCrossRefPubMedGoogle Scholar
  22. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., and Ganbal, M.W., A microsatellite map of wheat, Genetics, 1998, vol. 149, pp. 2007–2023.PubMedPubMedCentralGoogle Scholar
  23. Salina, E.A., Leonova, I.N., Efremova, T.T., and Röder, M.S., Wheat genome structure: Translocations during the course of polyploidization, Funct. Integr. Genomics, 2006, vol. 6, pp. 71–80.CrossRefPubMedGoogle Scholar
  24. Sia, E.A., Jinks-Robertson, S., and Petes, T., Genetic control of microsatellite stability, Mitat. Res., 1997, vol. 383, pp. 61–70.CrossRefGoogle Scholar
  25. Tautz, D. and Renz, M., Simple sequences are ubiquitous repetitive components of eukaryotic genomes, Nucleic Acids Res., 1984, vol. 12, pp. 4127–4138.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., and McCouch, S., Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon association, and genetic marker potential, Genome Res., 2001, vol. 11, pp. 1441–1452. doi 10.1101/gr.184001Google Scholar
  27. Thuillet, A.C., Bru, D., David, J., Roumet, P., Santoni, S., Sourdille, P., and Bataillon, T., Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp durum Desf, Mol. Biol. Evol., 2002, vol. 19, pp. 122–125.PubMedGoogle Scholar
  28. Wang, Y., Yang, C., Jin, Q., Zhou, D., Wang, S., Yu, Y., and Yang, L., Genome-wide distribution comparative and composition analysis of the SSRs in Poaceae, BMC Genet., 2015. doi 10.1186/s12863-015-0178-zGoogle Scholar
  29. Webster, M.T., Smith, N.G.C., and Ellegren, H., Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 8748–8753.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wierdl, M., Dominska, M., and Petes, T.D., Microsatellite instability in yeast: Dependence on the length of the microsatellite, Genetics, 1997, vol. 140, pp. 769–779.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. B. Dobrovolskaya
    • 1
    • 2
  • C. Pont
    • 3
  • Yu. L. Orlov
    • 1
    • 2
  • J. Salse
    • 3
  1. 1.Federal Research Center, Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.National Institute for Agricultural ResearchBlaise Pascal UniversityClermont-FerrandFrance

Personalised recommendations