Features of chromosome behavior in meiosis in common wheat lines containing genetic material of tetraploid wheat species

  • O. A. Orlovskaya
  • I. N. Leonova
  • E. A. Salina
  • L. V. Khotyleva


The study of meiotic chromosome behavior in hybrid lines obtained by crossing common wheat with tetraploid wheat species shows that the introgression of alien genetic material into the common wheat genome does not have a negative effect on its meiotic stability. Aberrant cells are few not only in the metaphase but also at the final stage of the tetrads. The variation in the level of cytological stability between the studied lines stems from differences in the number and localization of tetraploid wheat genome fragments in the hybrid genome. The influence of the cytoplasm on the formation of the karyotype of wheat introgression lines has been detected.


common wheat (Triticum aestivum L.) tetraploid wheat species Triticum durum Triticum dicoccum Triticum dicoccoides wheat introgression lines microsporogenesis genotyping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Pshenitsy mira (Wheats of the World), Dorofeev, V.F., Ed., Leningrad: Agropromizdat, 1987.Google Scholar
  2. Abugalieva, S.I., Volkova, L.A., Ermekbaev, K.A., and Turuspekov, E.K., Genotyping of spring wheat commercial varietes of Kazakhstan using microsatellite DNA markers, Biotekhnol., Teoriya Prakt., 2012, no. 2, pp. 35–45.Google Scholar
  3. Akfirat, F.S. and Uncuoglu, A.A., Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR markers, Biochem. Genet., 2013, vol. 51, pp. 223–229.CrossRefGoogle Scholar
  4. Ganal, M.W. and Röder, M.S., Microsatellite and SNP markers in wheat breeding, in Genomics Assisted Crop Improvement, Varshney, R.K. and Tuberosa, R., Eds., Springer, 2007, pp. 1–24.CrossRefGoogle Scholar
  5. Gordeeva, E.I., Leonova, I.N., Kalinina, N.P., Salina, E.A., and Budashkina, E.B., Comparative cytological and molecular analysis of common wheat introgression lines containing genetic material of Triticum timopheevii Zhuk., Russ. J. Genet., 2009, vol. 45, no. 12, pp. 1428–1437.CrossRefGoogle Scholar
  6. Hajar, R. and Hodgkin, T., The use of wild relatives in crop improvement: A survey of development over the last 20 years, Euphytica, 2007, vol. 156, pp. 1–13.CrossRefGoogle Scholar
  7. Huang, X.Q., Börner, A., Röder, M.S., and Ganal, M.W., Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers, Theor. Appl. Genet., 2002, vol. 105, pp. 699–707.CrossRefPubMedGoogle Scholar
  8. Huang, X.Q., Cöster, H., Ganal, M.W., and Röder, M.S., Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.), Theor. Appl. Genet., 2003, vol. 106, pp. 1379–1389.PubMedGoogle Scholar
  9. Khlestkina, E.K., Salina, E.A., and Shumny, V.K., Genotyping of domestic wheat varieties using microsatellite (SSR) markers, S-kh. Biol., 2004, no. 5, pp. 44–51.Google Scholar
  10. Khotyleva, L., Koren, L., and Orlovskaya, O., Use of Triticeae tribe species for expanding and enriching genetic resources of Triticum aestivum, 8th International Wheat Conference, St. Petersburg, 2010, pp. 101–102.Google Scholar
  11. Landjeva, S., Korzun, V., and Ganeva, G., Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925–2003 using microsatellites, Genet. Resour. Crop Evol., 2006, vol. 53, pp. 1605–1614.CrossRefGoogle Scholar
  12. Leonova, I.N., Badaeva, E.D., Orlovskaya, O.A., Röder, M.S., Khotyleva, L.V., Salina, E.A., and Shumny, V.K., Comparative characteristic of Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum hybrid lines by genomic composition and resistance to fungal diseases under different environmental conditions, Russ. J. Genet., 2013, vol. 49, no. 11, pp. 1112–1118.CrossRefGoogle Scholar
  13. Leonova, I.N., Dobrovolskaya, O.B., Kaminskaya, L.N., Adonina, I.G., Koren, L.V., Khotyljova, L.V., and Salina, E.A. Molecular analysis of the Triticale lines with different Vrn gene systems using microsatellite markers and hybridization in situ, Rus. J. Genet., 2005, vol. 41, no. 9, pp. 1014–1020.CrossRefGoogle Scholar
  14. Leonova, I., Badaeva, E., Orlovskaya, O., et al., Evaluation of genetic diversity of common wheat hybrid lines containing T. durum and T. dicoccum genetic material, The 12th International Wheat Genetics Symposium, Yokohama, 2013, p. 99.Google Scholar
  15. Orlovskaya, O.A., Koren, L.V., Khotyleva, L.V., Morphological analysis of wheat hybrids developed by remote hybridization in the Triticeae tribe, Vesc NAN Belarus, Ser. Bjal. Navuk, 2011, no. 3, pp. 29–33.Google Scholar
  16. Koren, L.V., Orlovskaya, O.A. and Khotyleva, L.V., Cytological characteristic of wheat hybrids produced by remote hybridization of the Triticeae tribe, Vestsí NAN Belarusí, Ser. Bíyal. Navuk, 2011, no. 4, pp. 35–40.Google Scholar
  17. Peng, J.H., Bai, Y., Haley, S.D., and Lapitan, N.L.V., Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid, Genetica, 2009, vol. 135, pp. 95–122.CrossRefPubMedGoogle Scholar
  18. Somers, D.J., Isaac, P., and Edwards, K., A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.), Theor. Appl. Genet., 2004, vol. 109, pp. 1105–1114.CrossRefPubMedGoogle Scholar
  19. Tavrin, E.V., Allopolyploidy and formation of wheat, Tr. Prikl. Bot. Genet. Sel., 1989, vol. 128, pp. 45–52.Google Scholar
  20. Timonova, E.M., Leonova, I.N., Belan, I.A., Rosseeva, L.P., and Salina, E.A., The influence of particular chromosome regions of Triticum timopheevii on the formation of resistance to diseases and quantitative traits in common wheat, Russ. J. Genet., Appl. Res., 2012, vol. 2, no. 4, pp. 330–343.CrossRefGoogle Scholar
  21. You, G.X., Zhang, X.Y., and Wang, L.F., An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: Information from 96 random samples with maximized genetic diversity, Mol. Breed., 2004, vol. 14, pp. 397–406.CrossRefGoogle Scholar
  22. Zeng, J., Cao, W., Hucl, P., et al., Molecular cytogenetic analysis of wheat — Elymus repens introgression lines with resistance to Fusarium head blight, Genome, 2013, vol. 56, no. 1, pp. 75–82.CrossRefPubMedGoogle Scholar
  23. Zhang, X.Y., Li, C.W., Wang, L.F., et al., An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties I: Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production, Theor. Appl. Genet., 2002, vol. 106, pp. 112–117.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. A. Orlovskaya
    • 1
  • I. N. Leonova
    • 2
  • E. A. Salina
    • 2
  • L. V. Khotyleva
    • 1
  1. 1.Institute of Genetics and CytologyNational Academy of Sciences of BelarusMinskBelarus
  2. 2.The Federal Research Center Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations