Theoretical and practical issues of hydrocarbon biological oxidation by microorganisms

  • A. V. Bryanskaya
  • Yu. E. Uvarova
  • N. M. Slynko
  • E. A. Demidov
  • A. S. Rozanov
  • S. E. Peltek
Article

Abstract

This study is focused on the theoretical issues of biological oxidation of oil hydrocarbons varying from alkanes to polycyclic aromatic hydrocarbons. The biochemical mechanisms of the decomposition of the oil components are shown, as well as the review of data represented in the conventional data bases. The results of the microbial community studies, inhabiting the natural oil seeps of the Uzon caldera, are described in detail. It is the first study of the ecophysiological characteristics of oil-degrading microorganisms isolated from the thermal oil seeps of the caldera.

Keywords

biological oxidation oil hydrocarbons microorganisms Uzon caldera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov, A.Yu., Effect of medium composition and cultivation conditions on the growth of hydrocarbon-oxidizing microorganisms, Cand. Sci. (Biol.) Dissertation, Volgograd, 2010.Google Scholar
  2. Andreeva, I.S., Emel’yanova, E.K., Zagrebel’nyi, S.N., et al., Psychrotolerant oil-destructing strains for bioremediation of soil and water pollution, Biotekhnologiya, 2006, no. 1, p. 43.Google Scholar
  3. Balashova, N.V., Kosheleva, I.A., Filonov, A.E., et al., Phenanthreneand naphthalene-degrading strains of Pseudomonas putida, Microbiology (Moscow), 1997, vol. 66, no. 4, pp. 408–413.Google Scholar
  4. Baryshnikova, L.M., Grishchenkov, V.G., Arinbasarov, M.U., et al., Biodegradation of oil products by individual degrading strains and their associations in liquid media, Appl. Biochem. Microbiol., 2001, vol. 37, no. 5, pp. 463–468.CrossRefGoogle Scholar
  5. Beskrovnyi, N.S., Lebedev, B.A., and Glavatskikh, S.F., Metals and oil in hydrothermal solutions of caldera Uzon, in Sovremennye mineraloobrazuyushchie rastvory (Modern Mineral-Forming Solutions), PetropavlovskKamchatskii, 1970, pp. 21–22.Google Scholar
  6. Bol’shakov, G.F. and Beiko, O.A., Khimicheskii sostav neftei Zapadnoi Sibiri (The Chemical Composition of Petroleum in Western Siberia), Novosibirsk: Nauka, 1988.Google Scholar
  7. Bonch-Osmolovskaya, E.A., Kochetkova, T.V., Rusanov, I.I., et al., Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs, Extremophiles, 2011, vol. 15, no. 3, pp. 319–325.CrossRefPubMedGoogle Scholar
  8. Bonch-Osmolovskaya, E.A., Microbial communities of deep underground habitats in South Africa and Western Siberia: biodiversity and biotechnological potential, in Nauchno-issledovatel’skii otchet po gosudarstvennomu kontraktu no. 11.519.11.2029 (Research Report on the State Contract no. 11.519.11.2029), Moscow, 2013.Google Scholar
  9. Borzenkov, I.A., Milekhina, E.I., Gotoeva, M.T., et al., The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, Western Siberia, and Vietnam, Microbiology (Moscow), 2006, vol. 75, no. 1, pp. 66–72.CrossRefGoogle Scholar
  10. Cerniglia, C.E., Biodegradation of polycyclic aromatic hydrocarbons, Biodegradation, 1992, vol. 3, pp. 351–368.CrossRefGoogle Scholar
  11. Chugunov, V.A., Ermolenko, Z.M., Zhigletsova, S.K., et al., Development and testing of the biosorbent ekosorb prepared from an association of oil-oxidizing bacteria for cleaning oil-polluted soils, Appl. Biochem. Microbiol., 2000, vol. 36, no. 6, pp. 572–576.CrossRefGoogle Scholar
  12. Connors, M.A. and Barnsley, E.A., Naphthalene plasmid in pseudomonads, J. Bacteriol., 1982, vol. 149, p. 1096.PubMedCentralPubMedGoogle Scholar
  13. Cooper, D.G. and Goldenberg, B.G., Surface-active agents from two Bacillus species, Appl. Environ. Microbiol., 1987, vol. 53, pp. 224–229.PubMedCentralPubMedGoogle Scholar
  14. Dockyu, K., Young-Soo, K., Seong-Ki, K., et al., Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK1, Appl. Environ. Microbiol., 2002, no. 7, pp. 3270–3278.Google Scholar
  15. Dutta, T.K. and Harayama, S., Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326, Appl. Environ. Microbiol., 2001, vol. 67, no. 4, pp. 1970–1974.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Emel’yanova, E.K., The microorganisms of natural biocenoses for the bioremediation of soils and water bodies of Siberia contaminated by petroleum products, Cand. Sci. (Biol.) Dissertation, Kol’tsovo, 2009.Google Scholar
  17. Feist, C.F. and Hegeman, G.D., Phenol and benszoate metabolism by Pseudomonas putida of tangential pathways, J. Bacteriol., 1969, vol. 100, pp. 869–877.PubMedCentralPubMedGoogle Scholar
  18. Gradova, N.B., Gornova, I.B., Eddaudi, R., and Salina, R.N., Use of bacteria of the genus Azotobacter for bioremediation of oil-contaminated soils, Appl. Biochem. Microbiol., 2003, vol. 39, no. 3, pp. 279–281.CrossRefGoogle Scholar
  19. Gumerov, V.M., Molecular analysis of microbial biodiversity of hot springs of Kamchatka, Cand. Sci. (Biol.) Dissertation, Moscow, 2011.Google Scholar
  20. Hamme, J. and Ward, O., Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45 and Rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them, Appl. Environ. Microbiol., 2001, vol. 69, pp. 4874–4879.CrossRefGoogle Scholar
  21. Hanson, K.G., Nigam, A., Kapadia, M., and Desai, A.J., Bioremediation of crude oil contamination using Acinetobacter sp. A3, Curr. Microbiol., 1997, vol. 35, no. 3, pp. 191–193.CrossRefPubMedGoogle Scholar
  22. Karpov, G.A., Bonch-Osmolovskaya, E.A., Zavarzin, G.A., and Lupikina, E.G., The characterization of thermophilic microorganisms of caldera Uzon (Eastern Kamchatka), in Sokhranenie bioraznoobraziya Kamchatki i prilegayushchikh morei (Biodiversity of Kamchatka and Adjacent Seas), Petropavlovsk-Kamchatskii: Kamchatpress, 2008, vol. 1, pp. 109–112.Google Scholar
  23. Karpov, G.A., Moroz, Yu.F., and Nikolaeva, A.G., Geochemistry of hydrothermal sites and the deep structure of caldera Uzon, in Trudy Kronotskogo gosudarstvennogo prirodnogo biosfernogo zapovednika (Proceedings of the Kronotskii State Nature Biosphere Reserve), Voronezh, 2013.Google Scholar
  24. Kireeva, H.A., Novoselova, E.I., and Onegova, T.S., The activity of catalase and dehydrogenase in the soils contaminated with oil and oil products, Agrokhimiya, 2002, no. 8, pp. 64–72.Google Scholar
  25. Kodina, L.A., Geochemical diagnosis of oil contamination of soil, in Vosstanovlenie neftezagryaznennykh pochvennykh ekosistem (Recovery of Oil-Contaminated Soil Ecosystems), Moscow: Nauka, 1988, pp. 112–122.Google Scholar
  26. Kontorovich, A.E., Bortnikova, S.B., Karpov, G.A., et al., Caldera Uzon (Kamchatka)—a unique natural laboratory of modern naftidogenesis, Geol. Geofiz., 2011, vol. 52, no. 8, pp. 986–990.Google Scholar
  27. Korshunova, I.O. and Egorova, D.O., bph Genes of halotolerant bacteria of the genus Rhodococcus controlling the first stage of biphenyl oxidation, in Biologiya budushchego: traditsii i innovatsii (Biology of Future: Traditions and Innovations), Yekaterinburg, 2010, p. 98.Google Scholar
  28. Kosheleva, I.A., Balashova, N.V., Izmalkova, T.Yu., et al., Degradation of phenanthrene by mutant naphthalenedegrading Pseudomonas putida strains, Microbiology (Moscow), 2000, vol. 69, no. 6, pp. 66–669.CrossRefGoogle Scholar
  29. Kublanov, I.V., Perevalova, A.A., Slobodkina, G.B., et al., Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon caldera, Kamchatka (Russia), App. Env. Microbiology, 2009, vol. 75, no. 1, pp. 286–291.CrossRefGoogle Scholar
  30. Lobkova, L.E. and Lobkov, E.G., The role of biological components in the ecosystems of thermal fields of Uzon and the Valley of Geysers and some aspects of thermal biogeocenoses, in Sokhranenie bioraznoobraziya Kamchatki i prilegayushchikh morei: (Conservation of Biodiversity of Kamchatka and Adjacent Seas), Petropavlovsk-Kamchatskii: KamchatNIRO, 2003, pp. 258–262.Google Scholar
  31. Loginov, O.N., Nurtdinova, L.A., Boiko, T.F., et al., Evaluation of the new biological product “Lenoyl” for the bioremediation of contaminated soils, Biotekhnologiya, 2004, no. 1, pp. 77–82.Google Scholar
  32. Lukin, A.E. and Pikovskii, Yu.I., New data on the isotopic composition of the hydrothermal oil (Uzon Caldera on the Kamchatka Peninsula), Dokl. Akad. Nauk, 2004, vol. 398, no. 1, pp. 90–93.Google Scholar
  33. Marchai, R., Penet, S., Solano-Screna, F., and Vandecasteele, J.P., Gasoline and diesel oil biodegradation, Oil Gas Sci. Technol., 2003, vol. 58, no. 4, pp. 441–448.CrossRefGoogle Scholar
  34. Mardanov, A.V., Ravin, N.V., Bonch-Osmolovskaya, E.A., and Skryabin, K.G., Identification and analysis of new genomes of thermophilic archaea, Genet. Mikroorg. Biotekhnol., 2008, vol. 20, p. 62.Google Scholar
  35. Mardanov, A.V., Ravin, N.V., Svetlitchnyi, V.A., et al., Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a Siberian oil reservoir, as revealed by genome analysis, Appl. Environ. Microbiol., 2009, vol. 75, pp. 4580–4588.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Mardanov, A.V. and Ravin, N.V., The impact of genomics on research in diversity and evolution of archaea, Biochemistry (Moscow), 2012, vol. 77, no. 8, pp. 799–812.PubMedGoogle Scholar
  37. Margesin, R., Labbe, D., Schinner, F., et al., Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils, Appl. Environ. Microbiol., 2003, vol. 69, pp. 3085–3092.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Nechaeva, I.A., Biodegradation of oil hydrocarbons by psychrotrophic destructing microorganisms, Cand. Sci. (Biol.) Dissertation, Pushchino, 2009.Google Scholar
  39. Nurtdinova, L.A., Study of the processes of remediation of oil-contaminated natural objects using the biological product “Lenoyl”, Cand. Sci. (Biol.) Dissertation, Ufa, 2005.Google Scholar
  40. Pavlikova, T.A., Degradation of oil by association of aerobic hydrocarbon-oxidizing microorganisms in different soil types, Cand. Sci. (Biol.) Dissertation, Moscow, 2004.Google Scholar
  41. Perevalova, A.A., Svetlichny, V.A., Kublanov, I.V., et al., Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, no. 3, pp. 995–999.CrossRefPubMedGoogle Scholar
  42. Rahman, K.S., Rahman, T., Lakshmanaperumalsamy, P., and Banat, I.M., Occurrence of crude oil degrading bacteria in gasoline and diesel station soils, J. Basic Microbiol., 2002, vol. 42, no. 4, pp. 284–291.CrossRefGoogle Scholar
  43. Safieva, R.Z., Physical chemistry of oil: physicochemical bases of oil refining technology, Doctoral (Techn.) Dissertation, Moscow, 1998.Google Scholar
  44. Slepova, T.V., Sokolova, T.G., Lysenko, A.M., et al., Carboxydocella sporoproducens sp. nov., a novel anaerobic coutilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring, Inter. J. Syst. Evol. Microbiol., 2006, vol. 56, no. 4, pp. 797–800.CrossRefGoogle Scholar
  45. Slutskaya, E.S., Bezsudnova, E.Yu., Mardanov, A.V., et al., Characteristics of the new M42 aminopeptidase from the crenarchaeon Desulfurococcus kamchatkensis, Dokl. Akad. Nauk, 2012, vol. 442, pp. 551–554.Google Scholar
  46. Stabnikova, E.V., Selezneva, M.V., Reva, O.N., et al., Prikl. Biokhim. mikrobiol, 1995, vol. 31, no. 5, pp. 534–539.Google Scholar
  47. Surzhko, L.F., Finel’shtein, Z.I., Baskunov, B.P., et al., Utilization of oil in soil and water by microbial cells, Mikrobiologiya, 1995, vol. 64, no. 3, pp. 393–398.Google Scholar
  48. Surzhko, L.F., Purification of natural and waste waters from oil pollution by immobilized hydrocarbon-oxidizing microorganisms, Cand. Sci. (Techn.) Dissertation, St. Petersburg, 1999.Google Scholar
  49. Taranova, L.V. and Zhdanova, E.B., Effect of bacteria and yeast on the biochemical oxidation of oil, in Neft’ i gaz Zapadnoi Sibiri: Tez. dokl. mezhdunar. nauchn.-tekhn. konf. (Oil and Gas in Western Siberia: Abstr. Int. Sci.Techn. Conf.), Tyumen’, 1996, vol. 2, p. 126.Google Scholar
  50. Timergazina, I.F. and Perekhodova, L.S., The problem of biological oxidation of oil and oil products by hydrocarbon-oxidizing microorganisms, Neftegaz. Geol. Teor. Prakt., 2012, vol. 7, no. 1.Google Scholar
  51. Varfolomeev, S.D., Karpov, G.A., Synal, H.-A., et al., The youngest natural oil on earth, Dokl. Chem., 2011, vol. 438, no. 1, pp. 144–147.CrossRefGoogle Scholar
  52. Vetrova, A.A., Biodegradation of oil hydrocarbons by plasmid-containing destructor microorganisms, Cand. Sci. (Biol.) Dissertation, Moscow, 2010.Google Scholar
  53. Vetrova, A.A., Ivanova, A.A., Filonova, A.E., et al., Biodegradation of crude oil by some strains and the principles of formation of microbial consortia to clean the environment from oil hydrocarbons, Izv. TulGU. Estestv. Nauki, 2013, no. 2–1, pp. 241–257.Google Scholar
  54. Zavarzin, G.A., The initial stages of evolution of the biosphere, Vestn. Ross. Akad. Nauk, 2010, vol. 80, no. 12, pp. 1085–1098.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Bryanskaya
    • 1
  • Yu. E. Uvarova
    • 1
  • N. M. Slynko
    • 1
  • E. A. Demidov
    • 1
  • A. S. Rozanov
    • 1
  • S. E. Peltek
    • 1
  1. 1.Institute of Cytology and GeneticsSiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations