Skip to main content

Divergence of expression of PHO3, PHO5, PHO11, and PHO12 paralogs in the yeast Saccharomyces cerevisiae is a mechanism of evolution of multigene families

Abstract

Evolution of multigene families are considered in the review on the example of the PHO gene family encoding the structure of acid phosphatases in the yeast Saccharomyces cerevisiae. Analysis of the databases demonstrated that divergence due to a change in regulation of the structural genes and their inclusion in new regulatory networks is the main direction of evolution of multigene families encoding exoenzymes.

This is a preview of subscription content, access via your institution.

References

  1. Savinov, V.A., Sambuk, E.V., and Padkina, M.V., Natural and recombinant phytases of microorganisms, Vestnik SPbU, vol. 3, no. 2, pp. 66–75.

  2. Abdulrehman, D., Monteiro, P.T., Teixeira, M.C., et al., YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface, Nucl. Acids Res., 2011, vol. 39, pp. D136–D140.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Albertin, W. and Marullo, P., Polyploidy in fungi: evolution after whole-genome duplication, Proc. Biol. Sci., 2012, vol. 279, pp. 497–509.

    Article  Google Scholar 

  4. Almer, A. and Horz, W., Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast, EMBO J., 1986, vol. 5, pp. 2681–2687.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Bergman, L.W., Stranathan, M.C., and Preis, L.H., Structure of the transcriptionally repressed phosphaterepressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae, Mol. Cell. Biol., 1986, vol. 6, pp. 38–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Carlson, M., Celenza, J.L., and Eng, F.J., Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres, Mol. Cell. Biol., 1985, vol. 5, pp. 2894–2902.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Chatr-Aryamontri, A., Breitkreutz, B.-J., Heinicke, S., et al., The BioGR ID interaction database: 2013 update, Nucleic Acids Res., 2013, vol. 41 (Database issue), pp. D816–D823. doi: 10.1093/nar/gks1158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Christiaens, J.F., Van Mulders, S.E., Duitama, J., et al., Functional divergence of gene duplicates through ectopic recombination, EMBO Rep., 2012, vol. 13, pp. 1145–1151.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cliften, P.F., Fulton, R.S., Wilson, R.K., and Johnston, M., After duplication: gene loss and adaptation in Saccharomyces genome, Genetics, 2006, vol. 172, pp. 863–872.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. De Steensma, H.Y., de Jonge, P., Kaptein, A., and Kaback, D.B., Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: localization of a repeated sequence containing an acid phosphatase gene near a telomere of chromosome I and chromosome VIII, Curr. Genet., 1989, vol. 16, pp. 131–137.

    Article  PubMed  Google Scholar 

  11. Dong, D., Yuan, Z., and Zhang, Z., Evidences for increased expression variation of duplicate genes in budding yeast: from cisto trans-regulation effects, Nucleic Acids Res., 2011, vol. 39, pp. 837–847.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fares, M.A., Keane, O.M., Toft, C., et al., The roles of whole-genome and small-scale duplications in the functional specialization of Saccharomyces cerevisiae genes, PLoS Genet., 2013, vol. 9, p. e1003176. doi: 10.1371/journal.pgen.1003176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Franceschini, A., Szklarczyk, D., Frankild, S., et al., STR ING v9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Res., 2013, vol. 1 (Database issue), pp. D808–D815.

    Article  Google Scholar 

  14. Force, A., Lynch, M., Pickett, F.B., et al., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, 1999, vol. 151, pp. 1531–1545.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Gregory, P.D., Schmid, A., Zavari, M., Lui, L., Berger, S.L., and Horz, W., Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast, Mol. cell, 1998, Vol. 1, pp. 495–505.

    Article  CAS  PubMed  Google Scholar 

  16. Harbison, C.T., Gordon, D.B., Lee, T.I., et al., Transcriptional regulatory code of an eukaryotic genome, Nature, 2004, vol. 431, pp. 99–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hu, Z., Killion, P.J., and Iyer, V.R., Genetic reconstruction of a functional transcriptional regulatory network, Nat. Genet., 2007, vol. 39, pp. 683–687.

    Article  CAS  PubMed  Google Scholar 

  18. Hurles, M., Gene duplication: the genomic trade in spare parts, PLoS Biol., 2004, vol. 2, p. E206.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Katju, V., Farslow, J.C., and Bergthorsson, U., Variation in gene duplicates with low synonymous divergence in Saccharomyces cerevisiae relative to Caenorhabditis elegans, Genome Biol., 2009, vol. 10, p. R75. doi: 10.1186/gb-2009-10-7-r75

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kowalska, E. and Kozik, A., The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts, Cell. Mol. Biol. Lett., 2008, vol. 13, pp. 271–282.

    Article  CAS  PubMed  Google Scholar 

  21. Kroll, K., Pahtz, V., and Kniemeyer, O., Elucidating the fungal stress response by proteomics. J. Proteomics, 2013, vol. 10.

  22. Lau, W., Schneider, K.R., and O’Shea, E.K., A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae, Genetics, 1998, vol. 150, pp. 1349–1359.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Lau, W.-T., Howson, R.W., Malkus, P., et al., Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae is required for ER exit of the high-affinity phosphate transporter Pho84p, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 1107–1112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Levasseur, A. and Pontarotti, P., The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics, Biology Direct, 2011, vol. 6, pp. 11–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Li, H. and Johnson, A.D., Evolution of transcription networks-lessons from yeasts, Curr. Biol., 2010, vol. 20, pp. 746–753.

    Article  Google Scholar 

  26. Lynch, M. and Conery, J.S., The evolutionary fate and consequences of duplicate genes, Science, 2000, vol. 290, pp. 1151–1155.

    Article  CAS  PubMed  Google Scholar 

  27. Mao, C., Brown, C.R., Griesenbeck, J., and Boeger, H., Occlusion of regulatory sequences by promoter nucleosomes in vivo, PLoS One, 2011, vol. 6, p. e17521. doi:10.1371/journal.pone.0017521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Meyhack, B., Baiwa, W., Rudolph, H., and Hinnen, A., Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences, EMBO J., 1982, vol. 1, pp. 675–680.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Mizunaga, T., Izawa, M., Ikeda, K., et al., Secretion of an active nonglycosylated form of the repressible acid phosphatase of Saccharomyces cerevisiae in the presence of tunicamycin at low temperatures, J. Biochem. (Tokyo), 1988, vol. 103, pp. 321–326.

    CAS  Google Scholar 

  30. Nishimura, K., Yasumura, K., Igarashi, K., Harashima, S., and Kakinuma, Y., Transcription of some PHO genes in Saccharomyces cerevisiae is regulated by spt7p, Yeast, 1999, vol. 15, pp. 1711–1717.

    Article  CAS  PubMed  Google Scholar 

  31. Nosaka, K., Nishimura, H., and Iwashima, A., Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae, Yeast, 1989, vol. 5, pp. 447–451.

    Google Scholar 

  32. Ohno, S., Patterns in genome evolution, Curr. Opin. Genet. Dev., 1993, vol. 3, pp. 911–914.

    Article  CAS  PubMed  Google Scholar 

  33. Papp, B., Pal, C., and Hurst, L.D., Evolution of cis-regulatory elements in duplicated genes in yeast, Trends Genet., 2003, vol. 19, pp. 417–422.

    Article  CAS  PubMed  Google Scholar 

  34. Sambuk, E.V., Fizikova, A.Y., Savinov, V.A., and Padkina, M.V., Acid phosphatases of budding yeast as a model of choice for transcription regulation research, Enzyme Res., 2011, vol. 2011, p. 356093. doi: 10.4061/2011/356093

    Article  PubMed Central  PubMed  Google Scholar 

  35. Shnyreva, M.G., Petrova, E.V., Egorov, S.N., and Hinnen, A., Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition, Microbiol. Res., 1996, vol. 151, pp. 291–300.

    Article  CAS  PubMed  Google Scholar 

  36. Singleton, C.K., Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae, Gene, 1997, vol. 15, pp. 111–121.

    Article  Google Scholar 

  37. Takashita, H., Kajiwara, Y., Shimoda, M., et al., Genetic instability of constitutive acid phosphatase in shochu and sake yeast, J. Biosci. Bioeng., 2013, vol. 116, pp. 71–78.

    Article  CAS  PubMed  Google Scholar 

  38. Thill, G.P., Kramer, R.A., Turner, K.J., and Bostian, K.A., Comparative analysis of the 5’-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae, Mol. Cell. Biol., 1983, vol. 3, pp. 570–579.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Kakimoto, S., Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae, Mol. Gen. Genet., 1975, vol. 143, pp. 65–70.

    Article  PubMed  Google Scholar 

  40. Tsai, Z.T., Tsai, H.K., Cheng, J.H., et al., Evolution of cisregulatory elements in yeast de novo and duplicated new genes, BMC Genomics, 2012, vol. 13, pp. 717–729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Van Hoek, M.J. and Hogeweg, P., Metabolic adaptation after whole genome duplication, Mol. Biol. Evol., 2009, vol. 26, pp. 2441–2453.

    Article  PubMed  Google Scholar 

  42. Venter, U. and Hörz, W., The acid phosphatase genes PHO10 and PHO11 in S. cerevisiae are located at the telomeres of chromosomes VIII and I, Nucleic Acids Res., 1989, vol. 17, pp. 1353–1369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yona, A.H., Manor, Y.S., Herbst, R.H., et al., Chromosomal duplication is a transient evolutionary solution to stress, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 21010–21015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Sambuk.

Additional information

Original Russian Text © E.V. Sambuk, M.V. Padkina, 2013, published in Ekologicheskaya Genetika, 2013, Vol. 11, No. 4, pp. 34–44.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sambuk, E.V., Padkina, M.V. Divergence of expression of PHO3, PHO5, PHO11, and PHO12 paralogs in the yeast Saccharomyces cerevisiae is a mechanism of evolution of multigene families. Russ J Genet Appl Res 5, 82–90 (2015). https://doi.org/10.1134/S2079059715020100

Download citation

Keywords

  • acid phosphatase
  • multigene families
  • expression of genes
  • evolution of duplicated genes