Advertisement

Divergence of expression of PHO3, PHO5, PHO11, and PHO12 paralogs in the yeast Saccharomyces cerevisiae is a mechanism of evolution of multigene families

Article
  • 60 Downloads

Abstract

Evolution of multigene families are considered in the review on the example of the PHO gene family encoding the structure of acid phosphatases in the yeast Saccharomyces cerevisiae. Analysis of the databases demonstrated that divergence due to a change in regulation of the structural genes and their inclusion in new regulatory networks is the main direction of evolution of multigene families encoding exoenzymes.

Keywords

acid phosphatase multigene families expression of genes evolution of duplicated genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Savinov, V.A., Sambuk, E.V., and Padkina, M.V., Natural and recombinant phytases of microorganisms, Vestnik SPbU, vol. 3, no. 2, pp. 66–75.Google Scholar
  2. Abdulrehman, D., Monteiro, P.T., Teixeira, M.C., et al., YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface, Nucl. Acids Res., 2011, vol. 39, pp. D136–D140.CrossRefPubMedCentralPubMedGoogle Scholar
  3. Albertin, W. and Marullo, P., Polyploidy in fungi: evolution after whole-genome duplication, Proc. Biol. Sci., 2012, vol. 279, pp. 497–509.CrossRefGoogle Scholar
  4. Almer, A. and Horz, W., Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast, EMBO J., 1986, vol. 5, pp. 2681–2687.PubMedCentralPubMedGoogle Scholar
  5. Bergman, L.W., Stranathan, M.C., and Preis, L.H., Structure of the transcriptionally repressed phosphaterepressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae, Mol. Cell. Biol., 1986, vol. 6, pp. 38–46.PubMedCentralPubMedGoogle Scholar
  6. Carlson, M., Celenza, J.L., and Eng, F.J., Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres, Mol. Cell. Biol., 1985, vol. 5, pp. 2894–2902.PubMedCentralPubMedGoogle Scholar
  7. Chatr-Aryamontri, A., Breitkreutz, B.-J., Heinicke, S., et al., The BioGR ID interaction database: 2013 update, Nucleic Acids Res., 2013, vol. 41 (Database issue), pp. D816–D823. doi: 10.1093/nar/gks1158CrossRefPubMedCentralPubMedGoogle Scholar
  8. Christiaens, J.F., Van Mulders, S.E., Duitama, J., et al., Functional divergence of gene duplicates through ectopic recombination, EMBO Rep., 2012, vol. 13, pp. 1145–1151.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Cliften, P.F., Fulton, R.S., Wilson, R.K., and Johnston, M., After duplication: gene loss and adaptation in Saccharomyces genome, Genetics, 2006, vol. 172, pp. 863–872.CrossRefPubMedCentralPubMedGoogle Scholar
  10. De Steensma, H.Y., de Jonge, P., Kaptein, A., and Kaback, D.B., Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: localization of a repeated sequence containing an acid phosphatase gene near a telomere of chromosome I and chromosome VIII, Curr. Genet., 1989, vol. 16, pp. 131–137.CrossRefPubMedGoogle Scholar
  11. Dong, D., Yuan, Z., and Zhang, Z., Evidences for increased expression variation of duplicate genes in budding yeast: from cisto trans-regulation effects, Nucleic Acids Res., 2011, vol. 39, pp. 837–847.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Fares, M.A., Keane, O.M., Toft, C., et al., The roles of whole-genome and small-scale duplications in the functional specialization of Saccharomyces cerevisiae genes, PLoS Genet., 2013, vol. 9, p. e1003176. doi: 10.1371/journal.pgen.1003176CrossRefPubMedCentralPubMedGoogle Scholar
  13. Franceschini, A., Szklarczyk, D., Frankild, S., et al., STR ING v9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Res., 2013, vol. 1 (Database issue), pp. D808–D815.CrossRefGoogle Scholar
  14. Force, A., Lynch, M., Pickett, F.B., et al., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, 1999, vol. 151, pp. 1531–1545.PubMedCentralPubMedGoogle Scholar
  15. Gregory, P.D., Schmid, A., Zavari, M., Lui, L., Berger, S.L., and Horz, W., Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast, Mol. cell, 1998, Vol. 1, pp. 495–505.CrossRefPubMedGoogle Scholar
  16. Harbison, C.T., Gordon, D.B., Lee, T.I., et al., Transcriptional regulatory code of an eukaryotic genome, Nature, 2004, vol. 431, pp. 99–104.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Hu, Z., Killion, P.J., and Iyer, V.R., Genetic reconstruction of a functional transcriptional regulatory network, Nat. Genet., 2007, vol. 39, pp. 683–687.CrossRefPubMedGoogle Scholar
  18. Hurles, M., Gene duplication: the genomic trade in spare parts, PLoS Biol., 2004, vol. 2, p. E206.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Katju, V., Farslow, J.C., and Bergthorsson, U., Variation in gene duplicates with low synonymous divergence in Saccharomyces cerevisiae relative to Caenorhabditis elegans, Genome Biol., 2009, vol. 10, p. R75. doi: 10.1186/gb-2009-10-7-r75CrossRefPubMedCentralPubMedGoogle Scholar
  20. Kowalska, E. and Kozik, A., The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts, Cell. Mol. Biol. Lett., 2008, vol. 13, pp. 271–282.CrossRefPubMedGoogle Scholar
  21. Kroll, K., Pahtz, V., and Kniemeyer, O., Elucidating the fungal stress response by proteomics. J. Proteomics, 2013, vol. 10.Google Scholar
  22. Lau, W., Schneider, K.R., and O’Shea, E.K., A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae, Genetics, 1998, vol. 150, pp. 1349–1359.PubMedCentralPubMedGoogle Scholar
  23. Lau, W.-T., Howson, R.W., Malkus, P., et al., Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae is required for ER exit of the high-affinity phosphate transporter Pho84p, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 1107–1112CrossRefPubMedCentralPubMedGoogle Scholar
  24. Levasseur, A. and Pontarotti, P., The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics, Biology Direct, 2011, vol. 6, pp. 11–23.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Li, H. and Johnson, A.D., Evolution of transcription networks-lessons from yeasts, Curr. Biol., 2010, vol. 20, pp. 746–753.CrossRefGoogle Scholar
  26. Lynch, M. and Conery, J.S., The evolutionary fate and consequences of duplicate genes, Science, 2000, vol. 290, pp. 1151–1155.CrossRefPubMedGoogle Scholar
  27. Mao, C., Brown, C.R., Griesenbeck, J., and Boeger, H., Occlusion of regulatory sequences by promoter nucleosomes in vivo, PLoS One, 2011, vol. 6, p. e17521. doi:10.1371/journal.pone.0017521CrossRefPubMedCentralPubMedGoogle Scholar
  28. Meyhack, B., Baiwa, W., Rudolph, H., and Hinnen, A., Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences, EMBO J., 1982, vol. 1, pp. 675–680.PubMedCentralPubMedGoogle Scholar
  29. Mizunaga, T., Izawa, M., Ikeda, K., et al., Secretion of an active nonglycosylated form of the repressible acid phosphatase of Saccharomyces cerevisiae in the presence of tunicamycin at low temperatures, J. Biochem. (Tokyo), 1988, vol. 103, pp. 321–326.Google Scholar
  30. Nishimura, K., Yasumura, K., Igarashi, K., Harashima, S., and Kakinuma, Y., Transcription of some PHO genes in Saccharomyces cerevisiae is regulated by spt7p, Yeast, 1999, vol. 15, pp. 1711–1717.CrossRefPubMedGoogle Scholar
  31. Nosaka, K., Nishimura, H., and Iwashima, A., Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae, Yeast, 1989, vol. 5, pp. 447–451.Google Scholar
  32. Ohno, S., Patterns in genome evolution, Curr. Opin. Genet. Dev., 1993, vol. 3, pp. 911–914.CrossRefPubMedGoogle Scholar
  33. Papp, B., Pal, C., and Hurst, L.D., Evolution of cis-regulatory elements in duplicated genes in yeast, Trends Genet., 2003, vol. 19, pp. 417–422.CrossRefPubMedGoogle Scholar
  34. Sambuk, E.V., Fizikova, A.Y., Savinov, V.A., and Padkina, M.V., Acid phosphatases of budding yeast as a model of choice for transcription regulation research, Enzyme Res., 2011, vol. 2011, p. 356093. doi: 10.4061/2011/356093CrossRefPubMedCentralPubMedGoogle Scholar
  35. Shnyreva, M.G., Petrova, E.V., Egorov, S.N., and Hinnen, A., Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition, Microbiol. Res., 1996, vol. 151, pp. 291–300.CrossRefPubMedGoogle Scholar
  36. Singleton, C.K., Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae, Gene, 1997, vol. 15, pp. 111–121.CrossRefGoogle Scholar
  37. Takashita, H., Kajiwara, Y., Shimoda, M., et al., Genetic instability of constitutive acid phosphatase in shochu and sake yeast, J. Biosci. Bioeng., 2013, vol. 116, pp. 71–78.CrossRefPubMedGoogle Scholar
  38. Thill, G.P., Kramer, R.A., Turner, K.J., and Bostian, K.A., Comparative analysis of the 5’-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae, Mol. Cell. Biol., 1983, vol. 3, pp. 570–579.PubMedCentralPubMedGoogle Scholar
  39. Kakimoto, S., Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae, Mol. Gen. Genet., 1975, vol. 143, pp. 65–70.CrossRefPubMedGoogle Scholar
  40. Tsai, Z.T., Tsai, H.K., Cheng, J.H., et al., Evolution of cisregulatory elements in yeast de novo and duplicated new genes, BMC Genomics, 2012, vol. 13, pp. 717–729.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Van Hoek, M.J. and Hogeweg, P., Metabolic adaptation after whole genome duplication, Mol. Biol. Evol., 2009, vol. 26, pp. 2441–2453.CrossRefPubMedGoogle Scholar
  42. Venter, U. and Hörz, W., The acid phosphatase genes PHO10 and PHO11 in S. cerevisiae are located at the telomeres of chromosomes VIII and I, Nucleic Acids Res., 1989, vol. 17, pp. 1353–1369CrossRefPubMedCentralPubMedGoogle Scholar
  43. Yona, A.H., Manor, Y.S., Herbst, R.H., et al., Chromosomal duplication is a transient evolutionary solution to stress, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 21010–21015.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of Genetics and BiotechnologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations