Russian Journal of Genetics: Applied Research

, Volume 4, Issue 5, pp 421–433 | Cite as

Enzyme polymorphism of an antioxidant system in chronically irradiated Scots pine populations

Article
  • 11 Downloads

Abstract

This paper studies enzyme polymorphism of the antioxidant system in endosperms and embryos of Scots pine seeds from the areas of the Bryansk region that have been contaminated by the Chernobyl nuclear disaster. The mutation frequency in isozyme loci, the effective number of alleles, and the heterozygosity increase with the increasing dose absorbed in reproductive organs of pine. The experimental populations demonstrate the increased intrapopulation diversity and frequency of occurrence of rare alleles. The genetic differentiation of the studied populations is caused by the increased frequency of occurrence of rare alleles.

Keywords

Pinus sylvestris Chernobyl accident contamination chronic exposure antioxidant enzymes polymorphism rare alleles null alleles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksakhin, R.M., Buldakov, L.A., Gubanov, V.A., et al., Krupnye radiatsionnye avarii: posledstviya i zashchitnye mery (Large Radiation Accidents: Consequences and Protective Measures), Moscow: IzdAT, 2001.Google Scholar
  2. Altukhov, Yu.P., Dukharev, V.A., and Zhivotovskii, L.A., Selection against rare electrophoretic protein variants and the rate of spontaneous mutation process in populations, Genetika, 1983, vol. 19, no. 2, pp. 264–275.Google Scholar
  3. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003.Google Scholar
  4. Antonova, E.V. and Pozolotina, V.N., Specific features of the allozyme structure of dandelion populations under conditions of radionuclide and chemical contamination, Russ. J. Ecol., 2007, vol. 38, no. 5, pp. 327–333.CrossRefGoogle Scholar
  5. Bradshaw, A.D., Genostasis and the limits to evolution, Phil. Trans. R. Soc. Lond. B, 1991, vol. 33, pp. 289–305.CrossRefGoogle Scholar
  6. Dukharev, V.A., Korshikov, I.I., Ryabokon’, S.M., et al., Genetic differentiation of subpopulations of Scots pine in the conditions of technogenic pollution, Tsitol. Genet., 1992, vol. 26, no. 3, pp. 7–11.Google Scholar
  7. Elstner, E.F. and Osswald, W., Mechanisms of oxygen activation during plant stress, Proc. Roy. Soc. Edinburgh Biol., 1994, vol. 102B, pp. 131–154.Google Scholar
  8. Fedotov, I.S. and Kal’chenko, V.A., Radiation and genetic consequences of irradiation of Scots pine populations in the Chernobyl accident area, Radiats. Biol. Radioekol., 2006, vol. 46, no. 3, pp. 268–278.Google Scholar
  9. Fisher, R.A., The Genetic Theory of Natural Selection, Oxford: Clarendon Press, 1930.Google Scholar
  10. Foyer, C.H. and Noctor, G., Oxygen processing in photosynthesis: a molecular approach, New Phytol., 2000, vol. 146, pp. 359–388.CrossRefGoogle Scholar
  11. Gechev, S.T., Breusegem, F., Stone, J., et al., Reactive oxygen species as signals that modulate plant stress responses and programmed cell death, BioEssays, 2006, vol. 28, pp. 1091–1101.CrossRefPubMedGoogle Scholar
  12. Geras’kin, S.A., Dikareva, N.S., Udalova, A.A., et al., Cytogenetic effects in Scots pine populations from the Bryansk region contaminated by radioactive pollutants as a result of the Chernobyl NPP accident, Radiats. Biol. Radioekol., 2008, vol. 48, no. 5, pp. 584–595.Google Scholar
  13. Geras’kin, S.A., Vanina, Yu.S., Dikarev, V.G., et al., Genetic variability in Scots pine populations from the Bryansk region contaminated by radioactive pollutants as a result of the Chernobyl NPP accident, Radiats. Biol.: Radioekol., 2009, vol. 49, no. 2, pp. 136–146.Google Scholar
  14. Geras’kin, S.A., Udalova, A.A., Dikareva, N.S., et al., Biological effects of chronic radiation exposure on plant populations, Radiats. Biol. Radioekol., 2010, vol. 50, no. 4, pp. 374–382.Google Scholar
  15. Geraskin, S.A., Oudalova, A.A., Dikareva, N.S., et al., Cytogenetic damage and reproductive effects in Scots pine populations affected by the Chernobyl accident, Ecotoxicology, 2011, vol. 20, pp. 1195–1208.CrossRefGoogle Scholar
  16. Glazko, T.T., Arkhipov, N.P., and Glazko, V.I., Populyatsionno-geneticheskie posledstviya ekologicheskikh katastrof na primere Chernobyl’skoi avarii (Population Genetic Consequences of Environmental Disasters: A Case Study of the Chernobyl Accident), Moscow: MSKhA im. K.A. Timiryazeva, 2008.Google Scholar
  17. Inze, D. and Van Montagu, M., Oxidative stress in plants, Curr. Opin. Biotechnol., 1995, vol. 6, pp. 153–158.CrossRefGoogle Scholar
  18. Ipatyev, V., Bulavik, I., Braginsky, V., et al., Forest and Chernobyl: forest ecosystems after the Chernobyl nuclear power plant accident: 1986–1994, J. Environ. Radioactiv., 1999, vol. 42, pp. 9–38.CrossRefGoogle Scholar
  19. Kal’chenko, V.A., Kalabushkin, V.A., and Rubanovich, A.V., Chronic irradiation as an environmental factor affecting the genetic structure of populations, Genetika, 1991, vol. 27, no. 4, pp. 676–684.Google Scholar
  20. Kal’chenko, V.A., Rubanovich, A.V., and Shevchenko, V.A., Adaptive nature of the polymorphism for the superoxide dismutase locus in chronically irradiated natural populations of Centaurea scabiosa L., Russ. J. Genet., 1996, vol. 32, no. 11, pp. 1307–1310.Google Scholar
  21. Karaban’, R.T., Mishenkov, N.N., Prister, B.S., et al., The action of acute Γ-radiation on a forest plant community, in Problemy lesnoi radioekologii. Trudy IPG (Problems of Forest Radioecology. IPG Transactions), Moscow: Gidrometeoizdat, 1979, vol. 38, pp. 27–52.Google Scholar
  22. Korshikov, I.I., Dukharev, V.A., Kotova, A.A., et al., Allozymic polymorphism of GOT, GDH, and SOD loci in Scots pine in conditions of technogenic environmental pollution, Tsitol. Genet., 1991, vol. 25, no. 6, pp. 60–64.Google Scholar
  23. Kozubov, G.M. and Taskaev, A.I., Radiobiologicheskie i radioekologicheskie issledovaniya drevesnykh rastenii (Radiobiological and Radioecological Studies of Arboreal Plants), St. Petersburg: Nauka, 1994.Google Scholar
  24. Krutovskii, K.V., Politov, D.V., Altukhov, Yu.P., et al., Genetic variability of Siberian cedar pine Pinus sibirica Du Tour. IV. Genetic diversity and the degree of genetic differentiation between populations, Genetika, 1989, vol. 25, no. 11, pp. 2009–2032.Google Scholar
  25. Kudryashov, Yu.B., Radiatsionnaya biofizika (ioniziruyushchie izlucheniya) (Radiation Biophysics (Ionizing Radiation)), Moscow: FIZMATLIT, 2004.Google Scholar
  26. Maletskii, S.I. and Yudanova, S.S., Germ pathways and stem cells in higher plants, Tsitol. Genet., 2007, no. 5, pp. 67–80.Google Scholar
  27. Manchenko, G.P., Handbook of Detection of Enzymes on Electrophoretic Gels, CRC Press, 1994.Google Scholar
  28. Mengoni, A., Gonnelli, C., Galardi, F., et al., Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L.: a random amplified DNA analysis, Mol. Ecol., 2000, vol. 9, pp. 1319–1324.CrossRefPubMedGoogle Scholar
  29. Muller, L., Vangronsveld, J., and Colpaert, J., Genetic structure of Suillus leteus populations in heavy metal polluted and nonpolluted habitats, Mol. Ecol., 2007, vol. 16, pp. 4728–4737.CrossRefPubMedGoogle Scholar
  30. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, no. 949, pp. 283–292.CrossRefGoogle Scholar
  31. Polesskaya, O.G., Rastitel’naya kletka i aktivnye formy kisloroda (Plant Cell and Reactive Oxygen species), Moscow: KDU, 2007.Google Scholar
  32. Ramzaev, V., Botter-Jensen, L., Thompsen, K.J., et al., An assessment of cumulative external doses from Chernobyl fallout for a forested area in Russia using optically stimulated luminiscence from quartz inclusions in bricks, J. Environ. Radioactiv., 2008, vol. 99, pp. 1154–1164.CrossRefGoogle Scholar
  33. Sarapul’tsev, B.I. and Geras’kin, S.A., Geneticheskie osnovy radiorezistentnosti i evolyutsiya (Genetic Basics of Radioresistance and Evolution), Moscow: Energoatomizdat, 1993.Google Scholar
  34. Shevchenko, V.A., Pechkurenkov, V.L., and Abramov, V.I., Radiatsionnaya genetika prirodnykh populyatsii (Radiation Genetics of Natural Populations), Moscow: Nauka, 1992.Google Scholar
  35. Shuiskaya, E.V., Gismatullina, L.G., Toderich, K.N., et al., Genetic differentiation of black saxaul, Haloxylon aphyllum (Chenopodiaceae), along a soil salinity gradient in the Kyzylkum desert, Russ. J. Ecol., 2012, vol. 43, no. 4, pp. 302–306.CrossRefGoogle Scholar
  36. Slomka, A., Sutkowska, A., Szczepaniak, M., et al., Increased genetic diversity of viola tricolor l. in metalpolluted environments, Chemosphere, 2011, vol. 83, pp. 435–442.CrossRefPubMedGoogle Scholar
  37. Sozinov, A.A., Polimorfizm belkov i ego znachenie v genetike i selektsii (Polymorphism of Proteins and Its Importance in Genetics and Breeding), Moscow: Nauka, 1985.Google Scholar
  38. Sparrow, A.H., Rogers, A.F., and Schwemmer, S.S., Radiosensitivity studies with woody plants, Radiat. Bot., 1968, vol. 8, pp. 149–186.CrossRefGoogle Scholar
  39. Spiridonov, S.I., Fesenko, S.V., Geras’kin, S.A., et al., Evaluation of irradiation doses of woody plants in the remote period after the Chernobyl accident, Radiats. Biol. Radioekol., 2008, vol. 48, no. 4, pp. 432–438.Google Scholar
  40. Tausz, M., Sircelj, H., and Grill, D., The glutathione system as a stress market in plant ecophysiology: is a stress-response concept valid, J. Exp. Bot., 2004, vol. 55, no. 404, pp. 1955–1962.CrossRefPubMedGoogle Scholar
  41. Theodorakis, C.W., Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment, Ecotoxicology, 2001, vol. 10, pp. 245–256.CrossRefPubMedGoogle Scholar
  42. Tikhomirov, F.A., Deistvie ioniziruyushchikh izluchenii na ekologicheskie sistemy (Effects of Ionizing Radiation on Ecological Systems), Moscow: Atomizdat, 1972.Google Scholar
  43. Ul’yanova, E.V., Pozolotina, V.N., and Sarapul’tsev, I.E., Ecogenetic characteristics of dandelion (Taraxacum officinale s.l.) populations from the Techa River floodplain ecosystems, Russ. J. Ecol., 2004, vol. 35, no. 5, pp. 308–315.CrossRefGoogle Scholar
  44. Volkova, P.Yu. and Geras’kin, S.A., Analysis of superoxide dismutase polymorphism in chronically irradiated Scots pine populations, Radiats. Biol. Radioekol., 2012, vol. 52, no. 4, pp. 370–380.Google Scholar
  45. Whitham, T.G., Bailey, J.K., Schweitzer, J.A., et al., A framework for community and ecosystem genetics: from genes to ecosystems, Nature Rev. Genet., 2006, vol. 7, pp. 510–523.CrossRefPubMedGoogle Scholar
  46. Wooley, S.C. and Wimp, G.M., Community and ecosystem genetics: a framework for integrating from genes to ecosystems, Nature Rev. Genet., 2006, vol. 7, pp. 510–523.CrossRefPubMedGoogle Scholar
  47. Zhivotovskii, L.A., Integratsiya poligennykh sistem v populyatsiyakh (Integration of Polygenic Systems in Populations), Moscow: Nauka, 1984.Google Scholar
  48. Zhivotovskii, L.A., Populyatsionnaya biometriya (Population Biometrics), Moscow: Nauka.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Laboratory for Ecotoxicology and Radiobiology of PlantsRussian Institute of Agricultural Radiology and AgroecologyObninskRussia

Personalised recommendations