Effect of human APP gene overexpression on Drosophila melanogaster cholinergic and dopaminergic brain neurons

  • O. I. Bolshakova
  • A. A. Zhuk
  • D. I. Rodin
  • G. A. Kislik
  • S. V. Sarantseva


We investigated the effects of overexpression of the human APP gene on the populations of cholinergic and dopaminergic brain neurons in the fruit fly, Drosophila melanogaster. The number of cholinergic neurons in the APP expressing young flies was the same as in the control and decreased significantly with age. The number of dopaminergic neurons in the APP expressing flies was significantly lower than in the control strain by the 15th day of life. Neurodegeneration was accompanied by deficiencies in memory and cognitive abilities in the flies overexpressing full-length APP (APP-Swedish), as well as in the strains with amyloid-β peptide production.


Alzeimer’s disease Drosophila melanogaster neurodegeneration cholinergic neurons dopaminergic neurons amyloid-β peptide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonda, J.D., Wang, X., Gustaw-Rothenberg, K., et al., Mitochondrial drugs for Alzheimer disease, Pharmaceuticals, 2009, vol. 2, pp. 287–298.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Botella, J., Bayersdorfer, F., and Schneuwly, S., Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson’s disease, Neurobiol. Dis., 2008, vol. 30, pp. 75–73.CrossRefGoogle Scholar
  3. Brand, A.H. and Perrimon, N., Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, 1993, vol. 118, pp. 401–415.PubMedGoogle Scholar
  4. Burns, J.M., Galvin, J.E., Roe, C.M., et al., The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs, Neurology, 2005, vol. 64, pp. 1397–1403.PubMedCrossRefGoogle Scholar
  5. Cao, X. and Südhof, T.C., A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60, Science, 2001, vol. 293, pp. 115–120.PubMedCrossRefGoogle Scholar
  6. Cao, X. and Südhof, T.C., Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation, J. Biol. Chem., 2004, vol. 279, pp. 24601–24611.PubMedCrossRefGoogle Scholar
  7. Chen, K.H., Reese, E.A., Kim, H.-W., et al., Disturbed neurotransmitter transporter expression in Alzheimer disease brain, J. Alzheimers Dis., 2011, vol. 26, pp. 755–766.PubMedCentralPubMedGoogle Scholar
  8. Claasen, A.M., Guévremont, D., Mason-Parker, S.E., et al., Secreted amyloid precursor protein-alpha upregulates synaptic protein synthesis by a protein kinase G-dependent mechanism, Neur. Lett, 2009, vol. 460, pp. 92–96.CrossRefGoogle Scholar
  9. Davies, P., Neurotransmitter-related enzymes in senile dementia of Alzheimer type, Brain Res., 1979, vol. 171, pp. 319–327.PubMedCrossRefGoogle Scholar
  10. Exley, R., McIntosh, J.M., Marks, M.J., et al., Striatal 5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum, J. Neurosci., 2012, vol. 32, pp. 2352–2356.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Francis, P.T., Palmer, A.M., Snape, M., and Wilcock, G.K., The cholinergic hypothesis of Alzheimer’s disease: a review of progress, J. Neurol. Neurosurg. Psychiatry, 1999, vol. 66, pp. 137–147.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Ghosal, K., Vogt, D.L., Liang, M., et al., Alzheimer’s disease-like pathological features in transgenic mice expressing the app intracellular domain, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 18367–18372.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Guan, Z.Z., Zhang, X., Ravid, R., and Nordberg, A., Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer’s disease, J. Neurochem., 2000, vol. 74, pp. 237–243.PubMedCrossRefGoogle Scholar
  14. Hardy, J. and Selkoe, D.J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. An updated summary of the amyloid hypothesis, Science, 2002, vol. 297, pp. 353–356.PubMedCrossRefGoogle Scholar
  15. Iijima-Ando, K. and Iijima, K., Transgenic Drosophila models of Alzheimer’s disease and tauopathies, Brain Struct. Funct., 2010, vol. 214, pp. 245–262.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kar, S., Slowikowski, S.P., Westaway, D., and Mount, H.T., Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease, J. Psychiatry Neurosci., 2004, vol. 29, pp. 427–468.PubMedCentralPubMedGoogle Scholar
  17. Kazee, A.M., Cox, C., and Richfield, E.K., Substantia nigra lesions in Alzheimer disease and normal aging, Alzheimer Dis. Assoc. Disord., 1995, vol. 9, pp. 61–67.PubMedCrossRefGoogle Scholar
  18. Kim, H., Kim, E., Lee, J., et al., C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3 expression, FASEB J., 2003, vol. 17, pp. 1951–1953.PubMedGoogle Scholar
  19. Li, Y., Liu, T., Peng, Y., et al., Specific functions of Drosophila amyloid precursor-like protein in the development of nervous system and nonneural tissues, J. Neurobiol., 2004, vol. 61, pp. 343–58.PubMedCrossRefGoogle Scholar
  20. Luo, L., Tully, T., and White, K., Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for appl gene, Neuron, 1992, vol. 9, pp. 595–605.PubMedCrossRefGoogle Scholar
  21. Mesulam, M.M., Mufson, E.J., Wainer, B.H., and Levey, A.I., Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (ch1-ch6), Neuroscience, 1983, vol. 10, pp. 1185–1201.PubMedCrossRefGoogle Scholar
  22. Mohandas, E., Rajmohan, V., and Raghunath, B., Neurobiology of Alzheimer’s disease, Indian J. Psychiatry, 2009, vol. 51, pp. 55–61.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Müller, T., Concannon, C.G., Ward, M.W., et al., Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD), Biol. Cell., 2007, vol. 18, pp. 201–210.Google Scholar
  24. Müller, U.C. and Zheng, H., Physiological functions of app family proteins, Cold Spring Harb. Perspect. Med., 2012, vol. 2, p. a006288.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Perez, S.E., Lazarov, O., Koprich, J.B., et al., Nigrostriatal dysfunction in familial Alzheimer’s disease-linked APPswe/PS1-E9 transgenic mice, J. Neurosci., 2005, vol. 25, pp. 10220–10229.PubMedCrossRefGoogle Scholar
  26. Perry, E.K., Morris, C.M., Court, J.A., et al., Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology, Neuroscience, 1995, vol. 64, pp. 385–395.PubMedCrossRefGoogle Scholar
  27. Pimplikar, S.W., Nixon, R.A., Robakis, N.K., et al., Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis, J. Neurosci., 2010, vol. 30, pp. 14946–14954.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Sarantseva, S., Timoshenko, S., Bolshakova, O., et al., Apolipoprotein E-mimetics inhibit neurodegeneration and restore cognitive functions in a transgenic Drosophila model of Alzheimer’s disease, PloS One, 2009, vol. 4, p. e8191.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Saura, C.A., Choi, S.-U., Beglopoulos, V., et al., Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration, Neuron, 2004, vol. 42, pp. 23–36.PubMedCrossRefGoogle Scholar
  30. Schaeffer, E.L. and Gattaz, W.F., Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme, Psychopharmacology, 2008, vol. 198, pp. 1–27.PubMedCrossRefGoogle Scholar
  31. Somnicki, L.P. and Les-niak, W., A putative role of the amyloid precursor protein intracellular domain (AICD) in transcription, Acta Neurobiol. Exp. (Wars.), 2008, vol. 68, pp. 219–228.Google Scholar
  32. Stokin, G.B., Almenar-Queralt, A., Gunawardena, S., et al., Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides, Hum. Mol. Genet., 2008, vol. 17, pp. 3474–3486.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Sun, C., Ou, X., Farley, J.M., Stockmeier, C., et al., Allopregnanolone increases the number of dopaminergic neurons in substantia nigra of a triple transgenic mouse model of Alzheimer’s disease, Curr. Alzheimer Res., 2012, vol. 9, pp. 473–480.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Thinakaran, G. and Koo, H.E., Amyloid precursor protein: trafficking, processing and function, J. Biol. Chem., 2008, vol. 283, pp. 296–304.CrossRefGoogle Scholar
  35. Tiraboschi, P., Hansen, L.A., Alford, M., et al., The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease, Neurology, 2000, vol. 55, pp. 1278–1283.PubMedCrossRefGoogle Scholar
  36. Torroja, L., Packard, M., Gorczyca, M., et al., Drosophila β-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction, J. Neurosci., 1999, vol. 15, pp. 7793–7803.Google Scholar
  37. Tully, T. and Quinn, W., Classical conditioning and retention in normal and mutant Drosophila melanogaster, J. Comp. Physiol., 1985, vol. P, pp. 263–277.CrossRefGoogle Scholar
  38. Walsh, D.M. and Selkoe, D.J., Deciphering the molecular basis of memory failure in Alzheimer’s disease, Neuron, 2004, vol. 44, pp. 181–193.PubMedCrossRefGoogle Scholar
  39. Whitehouse, R.J., Price, D.L., Struble, R.G., et al., Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science, 1982, vol. 215, pp. 1237–1239.PubMedCrossRefGoogle Scholar
  40. Yagi, Y., Tomita, S., Nakamura, M., et al., Overexpression of human amyloid precursor protein in Drosophila, Mol. Cell. Biol. Res. Comm., 2000, vol. 157, pp. 263–277.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. I. Bolshakova
    • 1
  • A. A. Zhuk
    • 1
  • D. I. Rodin
    • 1
  • G. A. Kislik
    • 1
  • S. V. Sarantseva
    • 1
  1. 1.B.P. Konstantinov St. Petersburg Nuclear Physics Institute National Research Centre “Kurchatov Institute”GatchinaRussia

Personalised recommendations