Russian Journal of Genetics: Applied Research

, Volume 3, Issue 6, pp 435–443 | Cite as

Effect of high temperature on survival of Drosophila melanogaster infected with pathogenic strain of Wolbachia bacteria

  • A. A. Strunov
  • Yu. Yu. Ilinskii
  • I. K. Zakharov
  • E. V. Kiseleva
Article
  • 82 Downloads

Abstract

The pathogenic Wolbachia strain wMelPop is detected in the central nervous system, muscles, and retina of Drosophila melanogaster. It reduces the host lifespan by a factor of two. This fact makes it promising for the control of insect pests and vectors of human diseases. Any symbiotic association is exposed to various stress factors: starvation, heat, cold and etc., which affect the symbiont interaction significantly. This study considers the influence of low (16°C) and high (29°C) temperature on the survival and lifespan of D. melanogaster females infected with the Wolbachia strain wMelPop. The ultrastructure of brain cells and distribution of the bacteria in this cells were studied. On day 7 of exposure to high temperature, electron-dense bodies occur in brain cells of the flies, resembling degrading bacteria. The amount of these bodies increases dramatically by day 13 of incubation at 29°C. On the basis of population and EM analysis, we identified the critical period (7–13 days) of high temperature influence, which dramatically decreases the survival of D. melanogaster.

Keywords

Drosophila melanogaster pathogenic Wolbachia strain wMelPop electron microscopy elevated temperatures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bordenstein, S.R. and Bordenstein, S.R., Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility, PLoS One, 2011, vol. 6, p. e29106.CrossRefGoogle Scholar
  2. Breeuwer, J.A.J., High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite, Exp. Appl. Acarol., 1999, vol. 23, pp. 871–881.PubMedCrossRefGoogle Scholar
  3. Chapman, R.F. and Page, W.W., Factors affecting the mortality of the grasshopper, Zonocerus variegates, in southern Nigeria, Okeanologiya, 1979, vol. 48, pp. 271–288.Google Scholar
  4. Clark, M.E., Anderson, C., Cande, J., and Karr, T.L., Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research, Genetics, 2005, vol. 170, pp. 1667–1675.PubMedCrossRefGoogle Scholar
  5. Cossins, A. and Bowler, K., Temperature Biology of Animals, London: Chapman and Hall, 1987.CrossRefGoogle Scholar
  6. Dobson, S.L., Bourtzis, K., Braig, H.R., et al., Wolbachia infections are distributed throughout insect somatic and germ line tissues, Insect. Biochem. Mol. Biol., 1999, vol. 29, pp. 153–160.PubMedCrossRefGoogle Scholar
  7. Hayes, S.F. and Burgdorfer, W., Reactivation of Rickettsia rickettsii in Dermacentor andersoni ticks: an ultrastructural analysis, Infect. Immun., 1982, vol. 37, pp. 779–785.PubMedGoogle Scholar
  8. Kushner, D.J., Microbial Life in Extreme Environments, London: Academic Press, 1978.Google Scholar
  9. Kozek, W.J., What is new in the Wolbachia/Diroflaria interaction?, Vet. Parasitol., 2005, vol. 133, pp. 127–132.PubMedCrossRefGoogle Scholar
  10. Loesel, R., Nässel, D.R., and Strausfeld, N.J., Common design in a unique midline neuropil in the brains of arthropods, Arthropod Struct. Dev., 2002, vol. 31, pp. 77–91.PubMedCrossRefGoogle Scholar
  11. McGraw, E.A., Merritt, D.J., Droller, J.N., and O’Neill, S.L., Wolbachia density and virulence attenuation after transfer into a novel host, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 2918–2923.PubMedCrossRefGoogle Scholar
  12. McMeniman, C.J., Lane, R.V., Cass, B.N., et al., Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science, 2009, vol. 323, pp. 141–144.PubMedCrossRefGoogle Scholar
  13. Min, K.T. and Benzer, S., Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 10792–10796.PubMedCrossRefGoogle Scholar
  14. Moreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., et al., A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium, Cell, 2009, vol. 139, pp. 1268–1278.PubMedCrossRefGoogle Scholar
  15. Petavy, G., David, J.R., and Gilbert, P., Viability and rate of development at different temperatures in Drosophila: a comparison of constant and alternating thermal regimes, J. Therm. Biol., 2001, vol. 26, pp. 29–39.PubMedCrossRefGoogle Scholar
  16. Pizzol, J. and Bolland, P., Effects of endosymbiotic Wolbachia on the diapause in Trichogramma hosts and effects of the diapause on Wolbachia, Entomol. Exp. Appl., 2003, vol. 106, pp. 193–200.CrossRefGoogle Scholar
  17. Precht, H.J., Christophersen, H., Hensel, H., and Larcher, W., Temperature and Life, Berlin: Springer-Verlag, 1973.CrossRefGoogle Scholar
  18. Rasgon, J.L., Gamston, C.E., and Ren, X., Survival of Wolbachia pipientis in cell-free medium, Appl. Environ. Microbiol., 2006, vol. 72, pp. 6934–6937.PubMedCrossRefGoogle Scholar
  19. Reynolds, E.S., The use of lead citrate at high ph as an electron-opaque stain for electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.PubMedCrossRefGoogle Scholar
  20. Serbus, L.R., Casper-Lindley, C., Landmann, F., and Sullivan, W., The genetics and cell biology of Wolbachia-host interactions, Ann. Rev. Genet., 2008, vol. 42, pp. 683–707.PubMedCrossRefGoogle Scholar
  21. Terasaki, M., Runft, L.L., and Hand, A.R., Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation, Mol. Biol. Cell, 2001, vol. 12, pp. 1103–1116.PubMedCrossRefGoogle Scholar
  22. Thomas, M.B. and Blanford, S., Thermal biology in insectparasite interactions, Trends Ecol. Evol., 2003, vol. 18, no. 7, pp. 344–350.CrossRefGoogle Scholar
  23. van Opijnen, T.V. and Breeuwer, J.A.J., High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbions, from the two-spotted mite, Exp. App. Acarol., 1999, vol. 23, pp. 871–881.CrossRefGoogle Scholar
  24. Weisman, N.Ya., Ilinskii, Yu.Yu., and Golubovskii, M.D., Population-genetic analysis of lifespan of Drosophila melanogaster: similar effects of the endosymbiont Wolbachia and the oncosuppressor lgl under temperature stress, Zh. Obshch. Biol., 2009, vol. 70, no. 5, pp. 438–447.Google Scholar
  25. Wiwatanaratanabutr, I. and Kittayapong, P., Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus, J. Invertebr. Pathol., 2009, vol. 102, pp. 220–224.PubMedCrossRefGoogle Scholar
  26. Zhukova, M.V., Voronin, D.A., and Kiseleva, E.V., High temperature initiates changes in Wolbachia ultrastructure in ovaries and early embryos of Drosophila melanogaster, Cell Tissue Biol., 2008, vol. 2, no. 5, pp. 546–556.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. A. Strunov
    • 1
  • Yu. Yu. Ilinskii
    • 1
  • I. K. Zakharov
    • 1
  • E. V. Kiseleva
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations