Advertisement

Pathological changes in mice treated with cyclophosphamide and exogenous DNA

  • E. V. Dolgova
  • V. P. Nikolin
  • N. A. Popova
  • A. S. Proskurina
  • K. E. Orishchenko
  • E. A. Alyamkina
  • Ya. R. Efremov
  • S. I. Baiborodin
  • E. R. Chernykh
  • A. A. Ostanin
  • S. S. Bogachev
  • T. S. Gvozdeva
  • E. M. Malkova
  • O. S. Taranov
  • V. A. Rogachev
  • A. S. Panov
  • S. N. Zagrebelnyi
  • M. A. Shurdov
Article

Abstract

The synergistic action of the cytostatic drug cyclophosphamide (CP) and fragmented exogenous DNA causes illness and death in mice (Dolgova et al., 2011–2013). The observed “delayed death” effect was most clearly pronounced when the DNA preparation was administered 18 to 30 h after CP treatment. This time span was termed the “death window.”

It was found that injections of exogenous DNA result in a sustained increase in bone-marrow cell (BMC) apoptosis, which occurs throughout the time of DNA administration (18–30 h). Exogenous DNA, both allogeneic and belonging to various taxa, induces BMC apoptosis. Plasmid DNA has the greatest effect on apoptosis induction. The analysis of reduction and restoration of the BMC subpopulations as the mice progressed to death revealed a virtually complete loss of the 12–20-μm fraction of the cell population (about 3–4% vs. 35–40% in the control), which corresponds to the maximum leukopenia on day 3 after CP treatment. However, the relative number of CD34+ hematopoietic stem cells (HSCs) from day 15 and until the end of the observation constituted 1.2–1.4%, which corresponds to the wild-type range. Comparison of BMC smears from the sternal bone marrow of the CP and CP + DNA groups of mice indicated that the BMC populations isolated from CP + DNA animals lack young committed lymphopoiesis progenitor cells. Moreover, the affected mice had immature blast cell types in their blood, which was never observed in healthy or CP-treated mice. Pathological and morphological analyses show that starting from posttreatment day 9, mice that received CP + DNA preparations displayed pronounced morphological changes in their lungs, liver, pancreas, central and peripheral immune system organs, and brain. Most of the pathological changes observed are consistent with a severe inflammatory response. This suggestion was proven by structural equivalents of functional involution of lymphoid organs, such as the thymus, spleen, and lymph nodes.

We speculate that the death of treated animals resulted from multiple organ dysfunctions caused by accidental involution of lymphoid organs and the systemic inflammatory response syndrome, both associated with injections of fragmented exogenous DNA into experimental animals within the “death window,” which corresponds to the final step in the repair of the majority of CP-induced double-strand breaks.

Keywords

cyclophosphamide exogenous DNA bone-marrow cells apoptosis systemic inflammation accidental involution of lymphoid organs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanas’eva, Yu.I., Kuznetsova, S.L., and Yurina, N.A., Gistologiya, tsitologiya i embriologiya (Histology, Cytology, and Embryology), Moscow: Meditsina, 2004.Google Scholar
  2. Andrews, N.W., Membrane repair and immunological danger, EMBO Rep., 2005, vol. 6, no. 9, pp. 826–830.PubMedCrossRefGoogle Scholar
  3. Buckley, R.H., Primary immunodeficiency diseases due to defects in lymphocytes, N. Engl. J. Med., 2000, vol. 343, no. 18, pp. 1313–1324.PubMedCrossRefGoogle Scholar
  4. Coban, C., Koyama, S., Takeshita, F., et al., Molecular and cellular mechanisms of DNA vaccines, Hum. Vaccin., 2008, vol. 4, pp. 453–456.PubMedCrossRefGoogle Scholar
  5. Cook, R., Wu, C.C., Kang, Y.J., and Han, J., The role of the p38 pathway in adaptive immunity, Cell. Mol. Immunol., 2007, vol. 4, no. 4, pp. 253–259.PubMedGoogle Scholar
  6. Decker, P., Wolburg, H., and Rammensee, H.G., Nucleosomes induce lymphocyte necrosis, Eur. J. Immunol., 2003, vol. 33, no. 7, pp. 1978–1987.PubMedCrossRefGoogle Scholar
  7. Decker, P., Singh-Jasuja, H., Haager, S., et al., Nucleosome, the main autoantigen in systemic lupus erythematosis, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on inflammation, J. Immunol., 2005, vol. 174, no. 6, pp. 3326–3334.PubMedGoogle Scholar
  8. Derbyshire, M.K., Epstein, L.H., Young, C.S.H., et al., Nonhomologous recombination in human cells, Mol. Cell Biol., 1994, vol. 14, no. 1, pp. 156–169.PubMedGoogle Scholar
  9. Dolgova, E.V., Prokopenko, A.V., Nikolin, V.P., et al., Characterization of changes in the number of moderate repeats in the genome of bone marrow cells of experimental mice treated with cyclophosphamide and exogenous human DNA, Russ. J. Genet. Appl. Res., 2013 (in press).Google Scholar
  10. Dolgova, E.V., Proskurina, A.S., Nikolin, V.P., et al., Characterization of temporal parameters of manifestations of the toxic effect of injections of exogenous DNA after pretreatment with the cytostatic cyclophosphamide, Vavilov. Zh. Genet. Selekts., 2011, vol. 15, no. 4, pp. 674–689.Google Scholar
  11. Dolgova, E.V., Nikolin, V.P., Popova, N.A., et al., Internalization of exogenous DNA into internal compartments of murine bone marrow cells, Russ. J. Genet. Appl. Res., 2012, vol. 2, no. 6, pp. 440–452.CrossRefGoogle Scholar
  12. Fugmann, S.D., Rag1 and rag2 in V (D) J recombination and transposition, Immunol. Res., 2001, vol. 23, no. 1, pp. 23–39.PubMedCrossRefGoogle Scholar
  13. De Gregorio, E. and Rappuoli, R., Inside sensors detecting outside pathogens, Nat. Immunol., 2004, vol. 5, no. 11, pp. 1099–1100.PubMedCrossRefGoogle Scholar
  14. Harty, J.T., Tvinnereim, A.R., and White, D.W., CD8+ T cell effector mechanisms in resistance to infection, Annu. Rev. Immunol., 2000, vol. 18, pp. 275–308.PubMedCrossRefGoogle Scholar
  15. Ishii, K.J. and Akira, S., Innate immune recognition of, and regulation by, DNA, Trends Immunol., 2006, vol. 27, pp. 525–532.PubMedCrossRefGoogle Scholar
  16. Kaufmann, S.H. and Schaible, U.E., Antigen presentation and recognition in bacterial infections, Curr. Opin. Immunol., 2005, vol. 17, no. 1, pp. 79–87.PubMedCrossRefGoogle Scholar
  17. Kotnis, A., Du, L., Liu, C., et al., Non-homologous end joining in class switch recombination: the beginning of the end, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2009, vol. 364, no. 1517, pp. 653–665.PubMedCrossRefGoogle Scholar
  18. Krishan, A., Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining, J. Cell Biol., 1975, vol. 66, no. 1, pp. 188–193.PubMedCrossRefGoogle Scholar
  19. Kruglyakov, P.V., Sokolova, I.B., and Polyntsev, D.G., Stem cells of differentiating tissues of an adult organism, Tsitologiya, 2008, vol. 50, no. 7, pp. 557–567.Google Scholar
  20. Lee, S., Oshige, M., Durant, S.T., et al., The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 50, pp. 18075–18080.PubMedCrossRefGoogle Scholar
  21. Lees-Miller, S.P. and Meek, K., Repair of DNA double strand breaks by non-homologous end joining, Biochimie, 2003, vol. 85, no. 11, pp. 1161–1173.PubMedCrossRefGoogle Scholar
  22. Lekstrom-Himes, J.A. and Gallin, J.I., Immunodeficiency diseases caused by defects in phagocytes, N. Engl. J. Med., 2000, vol. 343, no. 23, pp. 1703–1714.PubMedCrossRefGoogle Scholar
  23. Macgregor, C. and Varley, J., Working with Animal Chromosomes, Chichester: Wiley, 1984.Google Scholar
  24. Martin, D.A. and Elkon, K.B., Intracellular mammalian DNA stimulates myeloid dendritic cells to produce type I interferons predominantly through a toll-like receptor 9-independent pathway, Arthritis Rheum., 2006, vol. 54, pp. 951–962.PubMedCrossRefGoogle Scholar
  25. Medzhitov, R., Recognition of microorganisms and activation of the immune response, Nature, 2007, vol. 449, no. 7164, pp. 819–826.PubMedCrossRefGoogle Scholar
  26. Mayle, D., Brostoff, J., Roth, D.B., and Reutte, A., Immunologiya (Immunology), Moscow: Logosfera, 2007.Google Scholar
  27. Merrell, D.S. and Falkow, S., Frontal and stealth attack strategies in microbial pathogenesis, Nature, 2004, vol. 430, no. 6996, pp. 250–256.PubMedCrossRefGoogle Scholar
  28. Mueller, A. and Falkow, S., Persistent bacterial infections: the interface of the pathogen and the host immune system, Nat. Rev. Microbiol., 2004, vol. 2, no. 9, pp. 747–765.PubMedCrossRefGoogle Scholar
  29. Napirei, M., Karsunky, H., Zevnik, B., et al., Features of systemic lupus erythematosis in DNase 1-deficient mice, Nat. Genet., 2000, vol. 25, no. 2, pp. 177–181.PubMedCrossRefGoogle Scholar
  30. Orkin, S.H. and Zon, L.I., Hematopoiesis: an evolving paradigm for stem cell biology, Cell, 2008, vol. 132, no. 4, pp. 631–644.PubMedCrossRefGoogle Scholar
  31. Proskuryakov, S.Ya., Gavai, V.P., and Konoplyannikov, A.G., Immunology of necrosis and apoptosis, Biochemistry (Moscow), 2005, vol. 70, pp. 1593–1605.Google Scholar
  32. Ravetch, J.V., A full complement of receptors in immune complex diseases, J. Clin. Invest., 2002, vol. 110, no. 12, pp. 1759–1761.PubMedGoogle Scholar
  33. Rosen, F.S., Cooper, M.D., and Wedgwood, R.J., The primary immunodeficiencies, N. Engl. J. Med., 1995, vol. 333, no. 7, pp. 431–440.PubMedCrossRefGoogle Scholar
  34. Rossi, D.J., Jamieson, C.H., and Weissman, I.L., Stems cells and the pathways to aging and cancer, Cell, 2008, vol. 132, no. 4, pp. 681–696.PubMedCrossRefGoogle Scholar
  35. Rouse, B.T. and Suvas, S., Regulatory cells and infectious agents: detentes cordiale and contraire, J. Immunol., 2004, vol. 173, no. 4, pp. 2211–2215.PubMedGoogle Scholar
  36. Rykova, E.Yu., Laktionov, P.P., and Vlasov, V.V., The activatory effect of DNA on the immune system, Usp. Sovrem. Biol., 2001, vol. 121, pp. 160–171.Google Scholar
  37. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning, a Laboratory Manual, 2nd ed., Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989.Google Scholar
  38. Shirota, H., Ishii, K.J., Takakuwa, H., and Klinman, D.M., Contribution of interferon-beta to the immune activation induced by double-stranded DNA, Immunology, 2006, vol. 118, pp. 302–310.PubMedCrossRefGoogle Scholar
  39. Silva, J. and Smith, A., Capturing pluripotency, Cell, 2008, vol. 132, no. 4, pp. 532–536.PubMedCrossRefGoogle Scholar
  40. Takeshita, F. and Ishii, K.J., Intracellular DNA sensors in immunity, Curr. Opin. Immunol., 2008, vol. 20, pp. 383–388.PubMedCrossRefGoogle Scholar
  41. Volkova, O.V. and Eletskii, Yu.K., Osnovy gistologii i gistologicheskoi tekhniki (Fundamentals of Histology and Histological Techniques), Moscow: Meditsina, 1971.Google Scholar
  42. Wang, H., Rosidi, B., Perrault, R., et al., DNA ligase III as a candidate component of backup pathways of nonhomologous end joining, Cancer Res., 2005, vol. 65, no. 10, pp. 4020–4030.PubMedCrossRefGoogle Scholar
  43. Warren, J.S., Yabroff, K.R., Remickd, G., et al., Tumor necrosis factor participates in the pathogenesis of acute immune complex alveolitis in the rat, J. Clin. Invest., 1989, vol. 84, no. 6, pp. 1873–1882.PubMedCrossRefGoogle Scholar
  44. Whaley, K., Complement and immune complex diseases, in Complement in Health and Disease, Whaley, K., Ed., Lancaster: MTP Press Ltd, 1987.Google Scholar
  45. Yu, J. and Thomson, J.A., Pluripotent stem cell lines, Genes Dev., 2008, vol. 22, no. 15, pp. 1987–1997.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. V. Dolgova
    • 1
  • V. P. Nikolin
    • 1
  • N. A. Popova
    • 1
  • A. S. Proskurina
    • 1
  • K. E. Orishchenko
    • 1
  • E. A. Alyamkina
    • 1
  • Ya. R. Efremov
    • 1
  • S. I. Baiborodin
    • 1
  • E. R. Chernykh
    • 2
  • A. A. Ostanin
    • 2
  • S. S. Bogachev
    • 1
  • T. S. Gvozdeva
    • 3
  • E. M. Malkova
    • 4
  • O. S. Taranov
    • 4
  • V. A. Rogachev
    • 1
  • A. S. Panov
    • 5
  • S. N. Zagrebelnyi
    • 6
  • M. A. Shurdov
    • 7
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Clinical Immunology, Siberian BranchRussian Academy of Medical SciencesNovosibirskRussia
  3. 3.Novosibirsk State Medical UniversityNovosibirskRussia
  4. 4.Vector Research Center for Virology and BiotechnologyKol’tsovo, Novosibirsk oblastRussia
  5. 5.WellsStar College of Health and Human ServicesKennesaw State UniversityKennesawUSA
  6. 6.Novosibirsk National Research State UniversityNovosibirskRussia
  7. 7.OOO PanagenGorno-AltaiskRussia

Personalised recommendations