Selection for catatonia: Effect on sexual function and estrous cycle synchronization

  • D. V. Klochkov
  • T. A. Alekhina


Body, ovary, and uterus weights; estrous cycle; dopamine and norepinephrine levels in the hypothalamus; and testosterone levels in blood plasma have been recorded in 2- to 3-month-old GC female rats selected for elevated catatonia response and compared with the outbred Wistar stock. The body weights of GC rats are lower, and the cyclic linkage between the ovaries and the uterus is disrupted, as is apparent from a reduced diestrus ovary weight and a lower estrogen-dependent uterus weight increase in comparison to those of Wistar. A statistically significant synchronization of estrous cycles is observed in GC rats kept in standard cages, five to seven animals per cage. It includes a larger number of matches of individual estrus phases so as to form a group estrus phase of their 4- to 5-day-long estrous cycle. Synchronized estrus phases occur in 50–60% of GC rats, which is significantly more than in Wistar rats (30–40%). With reduced dopamine and norepinephrine levels in hypothalami of GC rats, the levels of these monoamines are higher in estrus and low in diestrus. Testosterone levels in diestrus GC females are higher than in estrous or Wistar ones.


selection model of catatonia microscopy fluorescence estrous cycle synchronization estrus diestrus catecholamines testosterone catatonia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alekhina, T.A., Gilinski, M.A., and Kolpakov, V.G., Catecholamines level in the brain of rats with a genetic predisposition to catatonia, Biog. Amines, 1994, vol. 10, pp. 443–449.Google Scholar
  2. Barykina, N.N., Chepkasov, I.L., Alekhina, T.A., and Kolpakov, V.G., Selection of Wistar rats for predisposition to catalepsy, Genetika, 1983, vol. 19, no. 12, pp. 2014–2021.PubMedGoogle Scholar
  3. Cyr, M., Calon, F., Morissette, M., and Di Paolo, Th., Estrogenic modulation of brain activity: implications for schizophrenia and Parkinson’s disease, Psychiatry Neurosci., 2002, vol. 27, no. 1, pp. 12–27.Google Scholar
  4. Fink, G., Sumner, B.E., McQueen, J.K., et al., Sex steroid control of mood mental state and memory, Clin. Exp. Pharmacol. Physiol., 1998, vol. 25, no. 10, pp. 764–775.PubMedCrossRefGoogle Scholar
  5. Gattaz, W.F., Behrens, S., De Vry, J., and Hoffner, H., Oestradiol hemmt dopamine-vermittelte verhaltenweisen bei ratten-ein tiermodell zur untersuchung der geschlechtsspezifischen unterschide bei der schizophrenie (Estradiol inhibits dopamine mediates behavior in rats-an animal model of sex-specific differences in schizophrenia), Fortschr. Neurol. Psychiatr., 1992, vol. 60, no. 1, pp. 8–16.PubMedCrossRefGoogle Scholar
  6. Ivanov, Yu.N., Klochkov, D.V., and Poznyakov, M.A., Study of synchronization of sexual cycle in female gray rat (Rauovgicuttus norvegicus) under conditions of joint housing, Vavilov. Zh. Genet. Selekts., 2011, vol. 15, no. 1, pp. 35–44.Google Scholar
  7. Jennes, L., Jennes, M.E., Purvis, C., and Nees, M., C-Fos expression in noradrenergic A2 neurons of the rat during the estrous cycle and after steroid hormone treatments, Brain Res., 1992, vol. 586, no. 1, pp. 171–175.PubMedCrossRefGoogle Scholar
  8. Klochkov, D.V. and Shul’ga, V.A., Sex and cortical hormones of rat selected by the estrous cycle response to permanent illumination, Zh. Evol. Biokhim. Fiziol., 1994, vol. 30, no. 3, pp. 676–682.Google Scholar
  9. Klochkov, D.V., Alekhina, T.A., and Prokudina, O.I., Agespecific features of estrous cycles and folliculogenesis in GC female rats selected by catatonic reactivity, Bull. Exp. Biol. Med., 2011, vol. 151, no. 2, pp. 219–222.PubMedCrossRefGoogle Scholar
  10. Kolpakov, V.G., Katatoniya u zhivotnykh: genetika, neirofiziologiya, neirokhimiya (Catatonia in Animals: Genetics, Neurophysiology, and Neurochemistry), Novosibirsk: Nauka, 1990.Google Scholar
  11. Kolpakov, V.G., Kulikov, A.V., Alekhina, T.A., et al., Catatonia or depression: the GC rat strain as an animal model of psychopathology, Russ. J. Genet., 2004, vol. 40, no. 6, pp. 672–678.CrossRefGoogle Scholar
  12. Kretschmer, E., The multidimensional structure of schizophrenia in relation to therapy, Z. Pssychother. Med. Psychol., 1957, vol. 7, no. 5, pp. 183–191.Google Scholar
  13. Leranth, C., Roth, E.N., Elsworth, J.D., et al., Estrogen is essential for maintaining nigrostriatal dopamine neurons in primates: implications for Parkinson’s disease and memory, J. Neurosci., 2000, vol. 20, no. 23, pp. 8604–8609.PubMedGoogle Scholar
  14. Lima, F.B., Szawka, R.E., Anselmo-Franci, J.A., and Franci, C.R., Pargiline effect on luteinizing hormone secretion throughout the rat estrous cycle: correlation with serotonin, catecholamines and nitric oxide in the medial preoptic area, Brain Res., 2007, vol. 20, no. 1142, pp. 37–45.CrossRefGoogle Scholar
  15. McClintock, M.K., Social control of ovarian cycle and the function of estrous synchrony, Am. Zool., 1981, vol. 21, pp. 243–256.Google Scholar
  16. McClintock, M.K., Human pheromones: primers, releasers, or modulators?, in Reproduction in Context, Wallen, K. and Schneider, J.E., Eds., Cambridge: MIT Press, 2000, pp. 355–420.Google Scholar
  17. Morissette, M. and Di Paolo, T., Sex and estrous cycle variations of rat striatal dopamine uptake sites, Neuroendocrinology, 1993, vol. 58, no. 1, pp. 16–25.PubMedCrossRefGoogle Scholar
  18. Pankova, T.P., Igonina, T.M., and Salganik, R.I., The role of histamine as a mediator in the effect of estradiol on the rat uterus: hormone-induced inhibition of pheromone induction with histamine antagonists, Probl. Endokrinol., 1985, vol. 31, no. 3, pp. 73–78.Google Scholar
  19. Pfaff, D., Ribeiro, A., Mattews, J., and Kow, L.-M., Concepts and mechanisms of generalized central nervous system arousal, Ann. N. Y. Acad. Sci., 2008, no. 1129, pp. 11–25.Google Scholar
  20. Schank, J.C., Do Norway rats (Rattus norvegicus) synchronize their estrous cycles?, Physiol. Behav., 2001, no. 72, pp. 129–139.Google Scholar
  21. Schlumpf, M., Lichtensteiger, W., Langemann, H., et al., A fluometric microtechnique for simultaneous assay of 5-hidroxytriptamine, noradrenaline and dopamine in milligrams of brain tissue, Biochem. Pharmacol., 1974, vol. 23, no. 6, pp. 2337–2346.Google Scholar
  22. Shelley, D.N., Choleris, E., Kavaliers, M., and Pfaff, D., Mechanisms underlying sexual and affiliative behaviors of mice: relation to generalisized CNS arousal, Oxford Medicine Social Cognitive and Affective Neurosci., 2006, vol. 1, no. 3, pp. 260–270.CrossRefGoogle Scholar
  23. Shul’ga, V.A., Barykina, N.N., Alekhina, T.A., and Kolpakov, V.G., The physiological characteristics of genetic predisposition to catalepsy in rats depending on the stage of selection, Ross. Fiziol. Zh. im. I.M. Sechenova, 1996, vol. 82, no. 10, pp. 260–270.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations