Advertisement

Russian Journal of Genetics: Applied Research

, Volume 2, Issue 6, pp 480–485 | Cite as

The use of synthetic forms in preservation and exploitation of the gene pool of wild common wheat relatives

  • R. O. Davoyan
  • I. V. Bebyakina
  • O. R. Davoyan
  • A. N. Zinchenko
  • E. R. Davoyan
  • A. M. Kravchenko
  • Y. S. Zubanova
Article

Abstract

The results of investigation and exploitation of the synthetic genome-added form Triticum miguschovae (T. militinae/Aegilops tauschii) and genome-substituted forms Avrodes, Avrosis, Avrolata, Avrotata, Avroale, and Avrocum are reported. In the genome-substituted forms, genomes of Ae. speltoides, Ae. sharonensis, Ae. umbellulata, Ae. uniaristata, Secale cereale, and Agropyron glaucum are substituted for the D-genome of common wheat cultivar Avrora. The synthetic forms provide a unique genetic basis for preservation and use of the gene pool of wild relatives in wheat breeding. These forms have been used to produce secondary recombination synthetic forms (RS forms) with BBAADS, BBAASR, and BBAASSsh genome constitutions and cytologically stable introgression lines combining disease resistance and high protein content. Five common winter wheat cultivars have been developed on the basis of the introgression lines obtained.

Keywords

common wheat synthetic forms cytological analysis introgression lines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksel’rud, D.V. and Rybalka, A.I., Agro-Technological Properties of Winter Wheat Lines Based on Alien Introgressions from Wild and Cultivated Relatives, in Puti povysheniya i stabilizatsii proizvodstva vysokokachepstvennogo zerna: Sb. dokl. Mezhdunar. nauch.-prakt. konf. (Methods to Improve and Stabilize High-Quality Grain Production: Proc. Int. Sci.-Pract. Conf.), Krasnodar, 2002, pp. 34–37.Google Scholar
  2. Blakeslee, A.F. and Avery, A.G., Methods of Inducing Doubling of Chromosomes in Plants, J. Hered., 1937, vol. 28, pp. 393–411.Google Scholar
  3. Bochev, B., The Genus Aegilops—Possibilities and Perspectives of Utilization the Breeding of High Quality Wheat Cultivar, in Proc. of 7th World Cereal Genet. and Breed. Congr., Prague, 1983, pp. 237–242.Google Scholar
  4. Davoyan, R.O., Synthetic Homologue of the Common Wheat Triticum miguschovae as a Source of Resistance to Leaf Rust, in Sb. Tr. KNIISKh (Collected Papers of KNIISKh), Krasnodar, 1988, pp. 30–36.Google Scholar
  5. Davoyan, R.O., Transfer of Genes for Resistance to Leaf Rust from Triticum militinae Zhuk. and Aegilops speltoides Tauch. to the Genome of Wheat through Synthetic Hexaploid Triticum miguschovae, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Petersburg: VIR, 1993.Google Scholar
  6. Davoyan, R.O. and Zhirov, E.G., Genome-Substituted Avrodes Form as a Source of Plant Resistance to Common Wheat to Leaf Rust and Powdery Mildew, S.-Kh. Biol., 1995, no. 1, pp. 95–101.Google Scholar
  7. Davoyan, R.O., Bebyakina, I.V., and Bessarab, K.S., Obtaining and Characterization of Alien-Substituted Lines of Common Winter Wheat Aurora with Chromosomes of intermediate Wheatgrass Agropyron glaucum, in Evolyutsiya nauchnykh tekhnologii v rastenievodstve: Sb. Nauch. Tr., posvyashch. 90-letiyu KNIISKh im. P.P. Luk’yanenko (Evolution of Scientific Technologies in Plant Breeding: Collected Papers Devoted to the 90th Anniversary of Luk’yanenko KNIISKh), Krasnodar, 2004a, vol. 3, pp. 3–9.Google Scholar
  8. Davoyan, R.O., Bebyakina, I.V., and Kekalo, N.Yu., Obtaining and Studying the Genome of Substituted D Lines of Common Wheat Carrying Chromosomes of Ae. umbellulata, Nauka Kubani, 2004b, no. 3, part 1, pp. 48–51.Google Scholar
  9. Davoyan, R.O., Bebyakina, I.V., and Kekalo, N.Yu., Identification of Chromosomes of Intermediate Wheatgrass (Agropyron glaucum) in Substitution Lines of the Common Wheat Variety Aurora, Nauka Kubani, 2005, pp. 104–107.Google Scholar
  10. Davoyan, R.O., Bebyakina, I.V., Davoyan, O.R., et al., The Transfer of Disease Resistance from Wild Relatives of Common Wheat using Synthetic Forms, Tr. Prikl. Botan. Genet. Selekts., 2009, vol. 166, pp. 519–523.Google Scholar
  11. Feldman, M., Cytogenetic and Molecular Approaches to Alien Gene Transfer in Wheat, Proc. 7th Int. Wheat Genet. Symp., 1988, vol. 1, pp. 23–32.Google Scholar
  12. Jiang, J., Friebe, B., and Gill, B.S., Recent Advances in Alien Gene Transfer in Wheat, Euphitica, 1994, vol. 73, pp. 199–212.CrossRefGoogle Scholar
  13. Kerber, E.R., Wheat: Reconstitution of the Tetraploid Component (AABB) of Hexaploid, Science, 1964, vol. 143, pp. 242–255.CrossRefGoogle Scholar
  14. Kerber, E.R. and Dyck, P.L., Inheritance in Hexaploid Wheat Leaf Rust Resistance and Other Characters Derived from Aegilops squarrosa, Can. J. Genet. Cytol., 1969, vol. 11, pp. 639–647.Google Scholar
  15. Knott, D.R., Transferring Alien Genes to Wheat, in Wheat and Wheat Improvement, 2nd ed., 1987, pp. 462–471.Google Scholar
  16. McIntosh, R.A., Devos, K.M., Dubovsky, J., et al., Catalogue of Gene Symbols for Wheat: 2005 Supplement, Ann. Wheat Newslett., 2005, vol. 51, pp. 272–285.Google Scholar
  17. Mello-Sampayo, T., Promotion of Homeologous Pairing in Hybrids of T. aestivum × Ae. longissima, Genet. Iberica, 1971, vol. 23, pp. 1–9.Google Scholar
  18. Miller, T.E., Double Alien Chromosome Substitution into Wheat, Annu. Rep. Inst. Plant Sci. Res. John Innes Centre, Norwich, 1986, pp. 67–69.Google Scholar
  19. Mujeeb-Kasi, A., Rosas, V., and Roldan, S., Conservation of the Genetic Variation of Triticum tauschii (Coss.) Schmalth. (Aegilops aquarrosa Auct. Non L.) in Synthetic Hexaploid Wheat (T. turgidum L. Sl Lat. × T. tauschii; 2n = 6x = 42, AABBDD) and Its Potential Utilization for Wheat Improvement, Genet. Res. Crop Evol., 1996, vol. 43, pp. 129–134.CrossRefGoogle Scholar
  20. Riley, R. and Kimber, G., The Transfer of Alien Genetic Variation to Wheat, in Reports Plaint Breed. Inst., Cambridge, 1966, pp. 6–36.Google Scholar
  21. Riley, R., Chapman, V., and Johnson, R., Introduction of Yellow Rust Resistance of Aegilops comosa into Wheat by Genetically Induced Homeologous Recombination, Nature, 1968, vol. 217, no. 5126, pp. 383–384.CrossRefGoogle Scholar
  22. Sears, E.R., Chromosome Engineering in Wheat, in Stadler Symp., Univ. of Missouri, Columbia, USA, 1972, vol. 4, pp. 23–28.Google Scholar
  23. Sechnyak, A.L. and Simonenko, V.K., Effect of the Rel Rye Genome on Homeologous Conjugation in Hybrids Secale cereale L. with Polyploid Species of Triticum L./Aegilops L., Tsitol. Genet., 1991, vol. 25, no. 1, pp. 20–23.Google Scholar
  24. Shchapova, A.I. and Kravtsova, L.A., Tsitogenetika pshenichno-rzhannykh gibridov (Cytogenetics of Wheat-Rye Hybrids), Novosibirsk: Nauka, 1990.Google Scholar
  25. Valkoun, J., Wheat Pre-Breeding using Wild Progenitors, in Proc. 6th Int. Wheat Conf. “Wheat in a Global Environment”, in Development in Plant Breeding, Dordrecht, 2000, vol. 9, pp. 699–707.Google Scholar
  26. Zhirov, E.G., Wheat Genomes: Study and Rearrangement, Extended Abstract of Doctoral (Biol.) Dissertation, Kiev, 1989.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • R. O. Davoyan
    • 1
  • I. V. Bebyakina
    • 1
  • O. R. Davoyan
    • 1
  • A. N. Zinchenko
    • 1
  • E. R. Davoyan
    • 1
  • A. M. Kravchenko
    • 1
  • Y. S. Zubanova
    • 1
  1. 1.Lukyanenko Research Institute of AgricultureKrasnodarRussia

Personalised recommendations