Russian Journal of Genetics: Applied Research

, Volume 2, Issue 5, pp 353–356 | Cite as

The molecular basis for construction of highly productive ecologically sustainable agrocenoses

  • I. A. Tikhonovich
  • N. A. Provorov


The methodology is suggested for analyzing the variability and heredity in super-organism genetic systems of different complexity ranging from two-component plant-microbe and animal-microbe symbiosis to the endosymbiotic and soil microbe communities. The approaches based on symbiogenetics and metagenomics may be used for development of highly productive ecologically sustainable agrocenoses based on the substitution of agrochemicals (mineral fertilizers, pesticides) by microbe preparations. A possibility to use the natural analogs of agrocenoses for creation of the models that allowed performing the directed construction and improvement of productivity in the sustainable agricultural systems is emphasized.


symbiogenetics metagenomics agrocenoses microbe communities evolution of symbioses super-organism genetic systems microbe-plant symbiotic N2-fixation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andronov, E.E., Petrova, S.N, Chizhevskaya, E.P., Korostik, E.V., Akhtemova, G.A., and Pinaev, A.G., Influence of Introducing the Genetically Modified Strain Sinorhizobium meliloti ACH-5 on the Structure of the Soil Microbial Community, Microbiology, 2009, vol. 78, no. 4, pp. 474–482.CrossRefGoogle Scholar
  2. Dillon, R.J. and Dillon, V.M., The Gut Bacteria of Insects: Non-Pathogenic Interactions, Ann. Rev. Entomol., 2004, vol. 49, pp. 71–92.CrossRefGoogle Scholar
  3. Higa, T. and Parr, J.F., Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment, International Nature Farming Research Center, Atami, Japan, 1994, pp. 1–16.Google Scholar
  4. Lederberg, J. and McCray, A.T., “Ome Sweet” Omics-A Genealogical Treasury of Words, Scientist, 2001, vol. 15, p. 8.Google Scholar
  5. Margulis, L., Rol’ simbioza v evolyutsii kletki (The Role of Symbiosis in Evolution of the Cell), Moscow: Mir, 1983.Google Scholar
  6. Mueller, U.G., Poulin, J., and Adams, R.M.M., Symbiont Choice in a Fungus-Growing and (Attini, Formicidae), Behav. Ecol., 2004, vol. 15, no. 2, pp. 357–364.CrossRefGoogle Scholar
  7. Noda, S., Ohkuma, M., and Kudo, T., Nitrogen Fixation Genes Expressed in the Symbiotic Microbial Community in the Gut Termite Coptotermis formosanus, Microb. Environ., 2002, vol. 17, no. 3, pp. 139–143.CrossRefGoogle Scholar
  8. Parniske, M., Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses, Nature Rev. Microbiol., 2008, vol. 6, pp. 763–775.CrossRefGoogle Scholar
  9. Provorov, N.A., Relationship between Symbiotic and Combined Nitrogen Assimilation in Leguminous Plants: Genetic and Breeding Aspects, Russ. J. Plant Physiol., 1996, vol. 43, no. 1, pp. 111–118.Google Scholar
  10. Provorov, N.A. and Tikhonovich, I.A., Ecological-Genetic Principles of Plant Breeding for Increasing the Efficiency of Interaction with Microorganisms, S.-kh. Biol., 2003, no. 3, pp. 11–25.Google Scholar
  11. Provorov, N.A., Plant-Microbe Symbioses as an Evolutionary Continuum, Zh. Obshch. Biol., 2009, vol. 70, no. 1, pp. 10–34.PubMedGoogle Scholar
  12. Sanchez, L., Weidmann, S., Arnould, C., Bernard, A.R., Gianinazzi, S., and Gianinazzi-Pearson, V., Pseudomonas fluorescens and Glomus mosseae Trigger DMI3-Dependent Activation of Genes Related to a Signal Transduction Pathway in Roots of Medicago truncatula, Plant Physiol., 2005, vol. 139, pp. 1065–1077.PubMedCrossRefGoogle Scholar
  13. Sessitsch, A., Howieson, J.G., Perret, X., Antoun, H., and Martinez-Romero, E., Advances in Rhizobium Research, Crit. Rev. Plant Sci., 2002, vol. 21, pp. 323–378.CrossRefGoogle Scholar
  14. Shevelev, N.S., Grushkin, A.G., and Tarakanov, B.V., Physio-logical Role of Microbiota in Paunch Digestion, S.-Kh. Biol., 2005, no. 6, pp. 9–13.Google Scholar
  15. Tikhonovich, I.A. and Provorov, N.A., Symbiotic Genetics of Microbe-Plant Interactions, Ekol. Genet., 2003, vol. 1, no. 0, pp. 36–46.Google Scholar
  16. Tikhonovich, I.A. and Provorov, N.A., Cooperation of Plants and Microorganisms: New Approaches to Constructing Environmentally Stable Agrosystems, Usp. Sovrem. Biol., 2007, vol. 127, no. 4, pp. 339–357.Google Scholar
  17. Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Symbioses of Plants and Microorganisms: Molecular Genetics of Agrosystems of the Future), St. Petersburg: Izd. SPbGU, 2009.Google Scholar
  18. Vavilov, N.I., Breeding as a Science, in Vavilov N.I. Teoreticheskie osnovy selektsii (Vavilov N.I. Theoretical Basis of Breeding), Moscow: Nauka, 1987, pp. 28–39.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.All-Russia Research Institute for Agricultural MicrobiologySt. PetersburgRussia

Personalised recommendations