Russian Journal of Genetics: Applied Research

, Volume 1, Issue 6, pp 532–539 | Cite as

Porcine endogenous retroviruses: What are the risks of infection transmission in xenotransplantation?

Article

Abstract

Modern studies on porcine endogenous retroviruses are considered in the review. Data on the nucleotide sequences of retroviruses, their expression, and the isolation of mature virions is discussed. The tropism of endogenous retroviruses to human cells and retrospective studies of patients are considered in detail. A critical overview of works on in vitro and in vivo interspecific transmission of porcine endogenous retroviruses is presented. Tactics for preventing possible infection and treating humans for it are discussed. Based on the overviewed data, it is concluded that the risk of infection transmission from xenograft recipients to the rest of the population is very low. This low risk can be further reduced by careful observation and, probably, vaccination of contacting persons, as well as by preventive use of antiviral drugs. The minor risk of infection transmission can also be reduced by application of modern biotechnological methods to raise pigs that have no endogenous viruses tropic to humans.

Keywords

Wild Boar Somatic Cell Nuclear Transfer Porcine Cell Somatic Cell Nuclear Transfer Embryo Endogenous Virus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitnazarov, R.B., Ermolaev, V.I., Nikitin, S.V., et al., Association of Endogenous Retroviruses with Different Types of Genetic Markers in Populations of Domestic and Wild Pigs, Dokl. Ross. Akad. S.-Kh. Nauk, 2006, no. 4, pp. 39–43.Google Scholar
  2. Aitnazarov, R.B., Nikitin, S.V., Knyazev, S.P., et al., Distribution of Porcine Endogenous Retroviruses in Various Forms of Sus scrofa L. 1758 (Suidae, Mammalia), Sib. Vestn. S.-Kh. Nauki, 2010, no.9, pp. 49–54.Google Scholar
  3. Akiyoshi, D.E., Denaro, M., Zhu, H., et al., Identification of a Full-Length cDNA for An Endogenous Retrovirus of Miniature Swine, J. Virol., 1998, vol. 72, no. 5, pp. 4503–4507.PubMedGoogle Scholar
  4. Al’tshtein, A.D., Gerasina, S.F., Zakharova, L.G., et al., Oncornavirus Type C in the Culture of Transplanted Pig Embryonic Kidney Cells (PEKC), Vopr. Virusol., 1972, no.2, pp. 222–226.Google Scholar
  5. Blusch, J.H., Patience, C., and Martin, U., Pig Endogenous Retroviruses and Xenotransplantation, Xenotransplantation, 2002, vol. 9, no. 4, pp. 242–251.PubMedCrossRefGoogle Scholar
  6. Blusch, J.H., Patience, C., Takeuchi, Y., et al., Infection of Nonhuman Primate Cells by Pig Endogenous Retrovirus, J. Virol., 2000, vol. 74, no. 16, pp. 7687–7690.PubMedCrossRefGoogle Scholar
  7. Bosch, S., Arnauld, C., and Jestin, A., Study of Full-Length Porcine Endogenous Retrovirus Genomes with Envelope Gene Polymorphism in a Specific Pathogen-Free Large White Swine Herd, J. Virol., 2000, vol. 74, no. 18, pp. 8575–8581.PubMedCrossRefGoogle Scholar
  8. Breese, S.S., Virus-Like Particles Occurring in Cultures of Stable Pig Kidney Cell Lines, Arch. Gesamte Virusforsch, 1970, vol. 30, no. 4, pp. 401–404.PubMedCrossRefGoogle Scholar
  9. Czauderna, F., Fischer, N., Boller, K., et al., Establishment and Characterization of Molecular Clones of Porcine Endogenous Retroviruses Replicating on Human Cells, J. Virol., 2000, vol. 74, no. 9, pp. 4028–4038.PubMedCrossRefGoogle Scholar
  10. Denner, J., Recombinant Porcine Endogenous Retroviruses (PERV-A/C): a New Risk for Xenotransplantation?, Arch. Virol., 2008, vol. 153, no. 8, pp. 1421–1426.PubMedCrossRefGoogle Scholar
  11. Denner, J., Specke, V., Thiesen, U., et al., Genetic Alterations of the Long Terminal Repeat of an Ecotropic Porcine Endogenous Retrovirus during Passage in Human Cells, Virology, 2003, vol. 314, no. 1, pp. 125–133.PubMedCrossRefGoogle Scholar
  12. Di Nicuolo, G., Alessandro, A., Andria, B., et al., Long-Term Absence of Porcine Endogenous Retrovirus Infection in Chronically Immunosuppressed Patients after Treatment with the Porcine Cell-Based Academic Medical Center Bioartificial Liver, Xenotransplantation, 2010, vol. 17, no.6, pp. 431–439.PubMedCrossRefGoogle Scholar
  13. Dinsmore, J.H., Manhart, C., Raineri, R., et al., No Evidence for Infection of Human Cells with Porcine Endogenous Retrovirus (PERV) after Exposure to Porcine Fetal Neuronal Cells, Transplantation, 2000, vol. 70, no.9, pp. 1382–1389.PubMedCrossRefGoogle Scholar
  14. Dorrschuck, E., Fischer, N., Bravo, I.G., et al., Restriction of Porcine Endogenous Retrovirus by Porcine APOBEC3 Cytidine Deaminases, J. Virol., 2011, vol. 85, no.8, pp. 3842–3857.PubMedCrossRefGoogle Scholar
  15. Edamura, K., Nasu, K., Iwami, Y., et al., Prevalence of Porcine Endogenous Retrovirus in Domestic Pigs in Japan and Its Potential Infection in Dogs Xenotrans-planted with Porcine Pancreatic Islet Cells, J. Vet. Med. Sci., 2004, vol. 66, no.2, pp. 129–135.PubMedCrossRefGoogle Scholar
  16. Ekser, B., Rigotti, P., Gridelli, B., and Cooper, D.K., Xenotransplantation of Solid Organs in the Pig-to-Primate Model, Transpl. Immunol., 2009, vol. 21, no.2, pp. 87–92.PubMedCrossRefGoogle Scholar
  17. Ericsson, T., Oldmixon, B., Blomberg, J., et al., Identification of Novel Porcine Endogenous Betaretrovirus Sequences in Miniature Swine, J. Virol., 2001, vol. 75, no.6, pp. 2765–2770.PubMedCrossRefGoogle Scholar
  18. Ericsson, T.A., Takeuchi, Y., Templin, C., et al., Identification of Receptors for Pig Endogenous Retrovirus, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no.11, pp. 6759–6764.PubMedCrossRefGoogle Scholar
  19. Gock, H., Salvaris, E., Murray-Segal, L., et al., Hyperacute Rejection of Vascularized Heart Transplants in BALB/C Gal Knockout Mice, Xenotransplantation, 2000, vol. 7, no.4, pp. 237–246.PubMedCrossRefGoogle Scholar
  20. Hanger, J.J., Bromham, L.D., McKee, J.J., et al., The Nucleotide Sequence of Koala (Phascolarctos cinereus) Retrovirus: A Novel Type C Endogenous Virus Related to Gibbon Ape Leukemia Virus, J. Virol., 2000, vol. 74, no.9, pp. 4264–4272.PubMedCrossRefGoogle Scholar
  21. Heneine, W., Tibell, A., Switzer, W.M., et al., No Evidence of Infection with Porcine Endogenous Retrovirus in Recipients of Porcine Islet-Cell Xenografts, Lancet, 1998, vol. 352, no. 9129, pp. 695–699.PubMedCrossRefGoogle Scholar
  22. Herring, C., Cunningham, D.A., Whittam, A.J., et al., Monitoring Xenotransplant Recipients for Infection by PERV, Clin. Biochem., 2001b, vol. 34, no. 1, pp. 23–27.PubMedCrossRefGoogle Scholar
  23. Herring, C., Quinn, G., Bower, R., et al., Mapping Full-Length Porcine Endogenous Retroviruses in a Large White Pig, J. Virol., 2001a, vol. 75, no. 24, pp. 12252–12265.PubMedCrossRefGoogle Scholar
  24. Himaki, T., Watanabe, S., Chi, H., et al., Production of Genetically Modified Porcine Blastocysts by Somatic Cell Nuclear Transfer: Preliminary Results toward Production of Xenograft-Competent Miniature Pigs, J. Reprod. Dev., 2010, vol. 56, no. 6, pp. 630–638.PubMedCrossRefGoogle Scholar
  25. ICTV (International Committee on Taxonomy of Viruses), 2011. Available at http://www.ictvonline.org/virusTaxonomy.aspbhcp=1
  26. Jin, H., Inoshima, Y., Wu, D., et al., Expression of Porcine Endogenous Retrovirus in Peripheral Blood Leucocytes Ten Different Breeds, Transplant. Infectious Disease, 2000, vol. 2, pp. 11–14.PubMedCrossRefGoogle Scholar
  27. Jung, W.Y., Kim, J.E., Jung, K.C., et al., Comparison of PERV Genomic Locations between Asian and European Pigs, Anim. Genet., 2010, vol. 41, no. 1, pp. 89–92.PubMedCrossRefGoogle Scholar
  28. Karlas, A., Irgang, M., Votteler, J., et al., Characterization of a Human Cell-Adapted Porcine Endogenous Retrovirus PERV-A/C, Ann. Transplant, 2010, vol. 15, no. 2, pp. 45–54.PubMedGoogle Scholar
  29. Kaulitz, D., Fiebig, U., Eschricht, M., et al., Generation of Neutralising Antibodies Against Porcine Endogenous Retroviruses (PERVs), Virology, 2011a, vol. 411, no. 1, pp. 78–86.PubMedCrossRefGoogle Scholar
  30. Kaulitz, D., Mihica, D., Plesker, R., et al., Absence of Infection in Pigs Inoculated with High-Titre Recombinant PERV-A/C, Arch. Virol., 2011b, vol. 156, no. 4, pp. 707–710.PubMedCrossRefGoogle Scholar
  31. Klymiuk, N., Aigner, B., Brem, G., and Wolf, E., Genetic Modification of Pigs as Organ Donors for Xenotransplantation, Mol. Reprod. Dev., 2010, vol. 77, no. 3, pp. 209–221.PubMedGoogle Scholar
  32. Krach, U., Fischer, N., Czauderna, F., and Tonjes, R.R., Comparison of Replication-Competent Molecular Clones of Porcine Endogenous Retrovirus Class A and Class B Derived from Pig and Human Cells, J. Virol., 2001, vol. 75, no. 12, pp. 5465–5472.PubMedCrossRefGoogle Scholar
  33. Kurome, M., Ishikawa, T., Tomii, R., et al., Production of Transgenic and Non-Transgenic Clones in Miniature Pigs by Somatic Cell Nuclear Transfer, J. Reprod. Dev., 2008, vol. 54, no. 3, pp. 156–163.PubMedCrossRefGoogle Scholar
  34. Le Tissier, P., Stoye, J.P., Takeuchi, Y., et al., Two Sets of Human-Tropic Pig Retrovirus, Nature, 1997, vol. 389, no. 6652, pp. 681–682.PubMedCrossRefGoogle Scholar
  35. Lee, J.H., Webb, G.C., Allen, R.D., and Moran, C., Characterizing and Mapping Porcine Endogenous Retroviruses in Westran Pigs, J. Virol., 2002, vol. 76, no. 11, pp. 5548–5556.PubMedCrossRefGoogle Scholar
  36. Lee, S.L., Kang, E.J., Maeng, G.H., et al., Developmental Ability of Miniature Pig Embryos Cloned with Mesenchymal Stem Cells, J. Reprod. Dev., 2010, vol. 56, no. 2, pp. 256–262.PubMedCrossRefGoogle Scholar
  37. Levy, M.F., Crippin, J., Sutton, S., et al., Liver Allotransplantation After Extracorporeal Hepatic Support with Transgenic (HCD55/HCD59) Porcine Livers: Clinical Results and Lack of Pig-to-Human Transmission of the Porcine Endogenous Retrovirus, Transplantation, 2000, vol. 69, no. 2, pp. 272–280.PubMedCrossRefGoogle Scholar
  38. Li, Y., Liu, J., Dai, J., et al., Production of Cloned Miniature Pigs by Enucleation using the Spindle View System, Reprod. Domest. Anim. 2010, vol. 45, no. 4, pp. 608–613.PubMedGoogle Scholar
  39. Li, Z., Ping, Y., Shengfu, L., et al., Phylogenetic Relationship of Porcine Endogenous Retrovirus (PERV) in Chinese Pigs with Some Type C Retrovirus, Virus Res., 2004, vol. 105, no. 2, pp. 167–173.PubMedCrossRefGoogle Scholar
  40. Loss, M., Arends, H., Winkler, M., et al., Analysis of Potential Porcine Endogenous Retrovirus (PERV) Transmission in a Whole-Organ Xenotransplantation Model Without Interfering Microchimerism, Transpl. Int., 2001, vol. 14, no. 1, pp. 31–37.PubMedCrossRefGoogle Scholar
  41. Ma, Y., Yang, Y., Lv, M., et al., Real-Time Quantitative Polymerase Chain Reaction with SYBR Green in Detection for Estimating Copy Numbers of Porcine Endogenous Retrovirus from Chinese Miniature Pigs, Transplant. Proc., 2010, vol. 42, no. 5, pp. 1949–1952.PubMedCrossRefGoogle Scholar
  42. Marcucci, K.T., Argaw, T., Wilson, C.A., and Salomon, D.R., Identification of Two Distinct Structural Regions in a Human Porcine Endogenous Retrovirus Receptor, HuPAR2, Contributing to Function for Viral Entry, Retrovirology, 2009, vol. 6, no. 3, pp. 1–15.Google Scholar
  43. Martin, U., Kiessig, V., Blusch, J.H., et al., Expression of Pig Endogenous Retrovirus by Primary Porcine Endothelial Cells and Infection of Human Cells, Lancet, 1998a, vol. 352, no. 9129, pp. 692–694.PubMedCrossRefGoogle Scholar
  44. Martin, U., Steinhoff, G., Kiessig, V., et al., Porcine Endogenous Retrovirus Is Transmitted Neither in vivo Nor in vitro from Porcine Endothelial Cells to Baboons, Transplant. Proc., 1999, vol. 31, nos. 1/2, pp. 913–914.PubMedCrossRefGoogle Scholar
  45. Martin, U., Steinhoff, G., Kiessig, V., et al., Porcine Endogenous Retrovirus (PERV) Was Not Transmitted from Transplanted Porcine Endothelial Cells to Baboons in Vivo, Transpl. Int., 1998b, vol. 11, no. 4, pp. 247–251.PubMedCrossRefGoogle Scholar
  46. Martin, U., Winkler, M.E., Id, M., et al., Productive Infection of Primary Human Endothelial Cells by Pig Endogenous Retrovirus (PERV), Xenotransplantation, 2000, vol. 7, no. 2, pp. 138–142.PubMedCrossRefGoogle Scholar
  47. Mattiuzzo, G. and Takeuchi, Y., Suboptimal Porcine Endogenous Retrovirus Infection in Non-Human Primate Cells: Implication for Preclinical Xenotransplantation, PLoS One, 2010, vol. 5, no. 10, p. e13203.PubMedCrossRefGoogle Scholar
  48. Mattiuzzo, G., Ivol, S., and Takeuchi, Y., Regulation of Porcine Endogenous Retrovirus Release by Porcine and Human Tetherins, J. Virol., 2010, vol. 84, no. 5, pp. 2618–2622.PubMedCrossRefGoogle Scholar
  49. Meije, Y., Tonjes, R.R., and Fishman, J.A., Retroviral Restriction Factors and Infectious Risk in Xenotransplantation, Am. J. Transplant., 2010, vol. 10, no. 7, pp. 1511–1516.PubMedCrossRefGoogle Scholar
  50. Miller, A.D., Bonham, L., Alfano, J., et al., A Novel Murine Retrovirus Identified during Testing for Helper Virus in Human Gene Transfer Trials, J. Virol., 1996, vol. 70, no. 3, pp. 1804–1809.PubMedGoogle Scholar
  51. Nakaya, Y., Hoshino, S., Yasuda, J., and Miyazawa, T., Mapping of a Neutralizing Epitope in the Surface Envelope Protein of Porcine Endogenous Retrovirus Subgroup B, J. Gen. Virol., 2011b, vol. 92, no. 4, pp. 940–944.PubMedCrossRefGoogle Scholar
  52. Nakaya, Y., Shojima, T., Yasuda, J., et al., Epigenetic Regulation on the 5-Proximal CpG Island of Human Porcine Endogenous Retrovirus Subgroup A Receptor 2/GPR172B, Microbes Infect., 2011a, vol. 13, no. 1, pp. 49–57.PubMedCrossRefGoogle Scholar
  53. Niebert, M. and Tonjes, R.R., Analyses of Prevalence and Polymorphisms of Six Replication-Competent and Chromosomally Assigned Porcine Endogenous Retroviruses in Individual Pigs and Pig Subspecies, Virology, 2003, vol. 313, no. 2, pp. 427–434.PubMedCrossRefGoogle Scholar
  54. Niebert, M. and Tonjes, R.R., Evolutionary Spread and Recombination of Porcine Endogenous Retroviruses in Suiformes, J. Virol., 2005, vol. 79, no. 1, pp. 649–654.PubMedCrossRefGoogle Scholar
  55. Nikitin, S.V., Yudin, N.S., Knyazev, S.P., et al., Differentiation of Wild Boar and Domestic Pig Populations Based on the Frequency of Chromosomes Carrying Endogenous Retroviruses, Nat. Sci., 2010, vol. 2, no. 6, pp. 527–534.Google Scholar
  56. Nikitin, S.V., Yudin, N.S., Knyazev, S.P., et al., Frequency of Chromosomes Carrying Endogenous Retroviruses in the Populations of Domestic Pig and Wild Boar, Russ. J. Genet., 2008, vol. 44, no. 6, pp. 686–693.CrossRefGoogle Scholar
  57. Paradis, K., Langford, G., Long, Z., et al., Search for Cross-Species Transmission of Porcine Endogenous Retrovirus in Patients Treated with Living Pig Tissue, Science, 1999, vol. 285, no. 5431, pp. 1236–1241.PubMedCrossRefGoogle Scholar
  58. Park, S.J., Huh, J.W., Kim, D.S., et al., Analysis of the Molecular and Regulatory Properties of Active Porcine Endogenous Retrovirus Gamma-1 Long Terminal Repeats in Kidney Tissues of the NIH-Miniature Pig, Mol. Cells, 2010, vol. 30, no. 4, pp. 319–325.PubMedCrossRefGoogle Scholar
  59. Patience, C., Patton, G.S., Takeuchi, Y., et al., No Evidence of Pig DNA or Retroviral Infection in Patients with Short-Term Extracorporeal Connection to Pig Kidneys, Lancet, 1998, vol. 352, no. 9129, pp. 699–701.PubMedCrossRefGoogle Scholar
  60. Patience, C., Switzer, W.M., Takeuchi, Y., et al., Multiple Groups of Novel Retroviral Genomes in Pigs and Related Species, J. Virol., 2001, vol. 75, no. 6, pp. 2771–2775.PubMedCrossRefGoogle Scholar
  61. Patience, C., Takeuchi, Y., and Weiss, R.A., Infection of Human Cells by an Endogenous Retrovirus of Pigs, Nat. Med., 1997, vol. 3, no. 3, pp. 282–286.PubMedCrossRefGoogle Scholar
  62. PGSP (Porcine Genome Sequencing Project), 2011. Available at http://www.sanger.ac.uk/Projects/S-scrofa/
  63. Qari, S.H., Magre, S., Garcia-Lerma, J.G., et al., Susceptibility of the Porcine Endogenous Retrovirus to Reverse Transcriptase and Protease Inhibitors, J. Virol., 2001, vol. 75, no. 2, pp. 1048–1053.PubMedCrossRefGoogle Scholar
  64. Reed, D.J., Lin, X., Thomas, T.D., et al., Alteration of Glycosylation Renders HIV Sensitive to Inactivation by Normal Human Serum, J. Immunol., 1997, vol. 159, no. 9, pp. 4356–4361.PubMedGoogle Scholar
  65. Rogel-Gaillard, C., Bourgeaux, N., Billault, A., et al., Construction of a Swine BAC Library: Application to the Characterization and Mapping of Porcine Type C Endoviral Elements, Cytogenet. Cell Genet., 1999, vol. 85, nos. 3/4, pp. 205–211.PubMedCrossRefGoogle Scholar
  66. Rother, R.P. and Squinto, S.P., The Alpha-Galactosyl Epitope: A Sugar Coating That Makes Viruses and Cells Unpalatable, Cell, 1996, vol. 86, no. 2, pp. 185–188.PubMedCrossRefGoogle Scholar
  67. Schumacher, J.M., Ellias, S.A., Palmer, E.P., et al., Transplantation of Embryonic Porcine Mesencephalic Tissue in Patients with PD, Neurology, 2000, vol. 54, no. 5, pp. 1042–1050.PubMedGoogle Scholar
  68. Scobie, L. and Takeuchi, Y., Porcine Endogenous Retrovirus and Other Viruses in Xenotransplantation, Curr. Opin. Organ Transplant., 2009, vol. 14, no. 2, pp. 175–179.PubMedCrossRefGoogle Scholar
  69. Specke, V., Tacke, S.J., Boller, K., et al., Porcine Endogenous Retroviruses: in vitro Host Range and Attempts to Establish Small Animal Models, J. Gen. Virol., 2001, vol. 82, no. 4, pp. 837–844.PubMedGoogle Scholar
  70. Sugimura, S., Yamanaka, K., Kawahara, M., et al., Early Metaphase II Oocytes Treated with Dibutyryl Cyclic Adenosine Monophosphate Provide Suitable Recipient Cytoplasm for the Production of Miniature Pig Somatic Cell Nuclear Transfer Embryos, Anim. Sci. J., 2010, vol. 81, no. 1, pp. 48–57.PubMedCrossRefGoogle Scholar
  71. Suzuka, I., Shimizu, N., Sekiguchi, K., et al., Molecular Cloning of Unintegrated Closed Circular DNA of Porcine Retrovirus, FEBS Lett., 1986, vol. 198, no. 2, pp. 339–343.PubMedCrossRefGoogle Scholar
  72. Tacke, S.J., Bodusch, K., Berg, A., and Denner, J., Sensitive and Specific Immunological Detection Methods for Porcine Endogenous Retroviruses Applicable to Experimental and Clinical Xenotransplantation, Xenotransplantation, 2001, vol. 8, no. 2, pp. 125–135.PubMedCrossRefGoogle Scholar
  73. Tacke, S.J., Kurth, R., and Denner, J., Porcine Endogenous Retroviruses Inhibit Human Immune Cell Function: Risk for Xenotransplantation?, Virology, 2000, vol. 268, no. 1, pp. 87–93.PubMedCrossRefGoogle Scholar
  74. Takefman, D.M., Wong, S., Maudru, T., et al., Detection and Characterization of Porcine Endogenous Retrovirus in Porcine Plasma and Porcine Factor VIII, J. Virol., 2001, vol. 75, no. 10, pp. 4551–4557.PubMedCrossRefGoogle Scholar
  75. Takeuchi, Y., Patience, C., Magre, S., et al., Host Range and Interference Studies of Three Classes of Pig Endogenous Retrovirus, J. Virol., 1998, vol. 72, no. 12, pp. 9986–9991.PubMedGoogle Scholar
  76. Takeuchi, Y., Porter, C.D., Strahan, K.M., et al., Sensitization of Cells and Retroviruses To Human Serum by (Alpha 1–3) Galactosyltransferase, Nature, 1996, vol. 379, no. 6560, pp. 85–88.PubMedCrossRefGoogle Scholar
  77. Tonjes, R.R., Czauderna, F., Fischer, N., et al., Molecularly Cloned Porcine Endogenous Retroviruses Replicate on Human Cells, Transplant. Proc., 2000, vol. 32, no. 5, pp. 1158–1161.PubMedCrossRefGoogle Scholar
  78. Uchida, M., Shimatsu, Y., Onoe, K., et al., Production of Transgenic Miniature Pigs by Pronuclear Microinjection, Transgenic Res., 2001, vol. 10, no. 6, pp. 577–582.PubMedCrossRefGoogle Scholar
  79. Valdes-Gonzalez, R., Dorantes, L.M., Bracho-Blanchet, E., et al., No Evidence of Porcine Endogenous Retrovirus in Patients with Type 1 Diabetes After Long-Term Porcine Islet Xenotransplantation, J. Med. Virol, 2010, vol. 82, no. 2, pp. 331–334.PubMedCrossRefGoogle Scholar
  80. van der Laan, L.J., Lockey, C., Griffeth, B.C., et al., Infection by Porcine Endogenous Retrovirus after Islet Xenotransplantation in SCID Mice, Nature, 2000, vol. 407, no. 6800, pp. 90–94.PubMedCrossRefGoogle Scholar
  81. Wilson, C.A., Porcine Endogenous Retroviruses and Xenotransplantation, Cell. Mol. Life Sci., 2008, vol. 65, no. 21, pp. 3399–3412.PubMedCrossRefGoogle Scholar
  82. Wilson, C.A., Wong, S., Muller, J., et al., Type C Retrovirus Released from Porcine Primary Peripheral Blood Mononuclear Cells Infects Human Cells, J. Virol., 1998, vol. 72, no. 4, pp. 3082–3087.PubMedGoogle Scholar
  83. Wilson, C.A., Wong, S., VanBrocklin, M., and Federspiel, M.J., Extended Analysis of the in Vitro Tropism of Porcine Endogenous Retrovirus, J. Virol., 2000, vol. 74, no. 1, pp. 49–56.PubMedCrossRefGoogle Scholar
  84. Wolgamot, G., Bonham, L., and Miller, A.D., Sequence Analysis of Mus dunni Endogenous Virus Reveals a Hybrid VL30/Gibbon Ape Leukemia Virus-Like Structure and a Distinct Envelope, J. Virol., 1998, vol. 72, no. 9, pp. 7459–7466.PubMedGoogle Scholar
  85. Yamanaka, K., Sugimura, S., Wakai, T., et al., Acetylation Level of Histone H3 in Early Embryonic Stages Affects Subsequent Development of Miniature Pig Somatic Cell Nuclear Transfer Embryos, J. Reprod. Dev., 2009, vol. 55, no. 6, pp. 638–644.PubMedCrossRefGoogle Scholar
  86. Yang, Q., Liu, F., Pan, X.P., et al., Fluidized-Bed Bioartificial Liver Assist Devices (BLADs) Based on Microen-capsulated Primary Porcine Hepatocytes Have Risk of Porcine Endogenous Retroviruses Transmission, Hepatol. Int., 2010, vol. 4, no. 4, pp. 757–761.PubMedCrossRefGoogle Scholar
  87. Yang, Y.G., Wood, J.C., Lan, P., et al., Mouse Retrovirus Mediates Porcine Endogenous Retrovirus Transmission into Human Cells in Long-Term Human-Porcine Chimeric Mice, J. Clin. Invest., 2004, vol. 114, no. 5, pp. 695–700.PubMedGoogle Scholar
  88. Yudin, N.S., Aitnazarov, R.B., Knyazev, S.P., et al., Differentiation of Wild and Domestic Pigs by the Frequency of Chromosomes That Contain Endogenous Retroviruses, Inform. Vestnik VOGiS, 2009, vol. 13, no. 4, pp. 741–750.Google Scholar
  89. Zhang, P., Yu, P., Wang, W., et al., An Effective Method for the Quantitative Detection of Porcine Endogenous Retrovirus in Pig Tissues, In Vitro Cell Dev. Biol. Anim., 2010b, vol. 46, no. 5, pp. 408–410.PubMedCrossRefGoogle Scholar
  90. Zhang, P., Yu, P., Wang, W., et al., Molecular Characterization of Long Terminal Repeat of Porcine Endogenous Retroviruses in Chinese Pigs, Acta Virol., 2010a, vol. 54, no. 3, pp. 165–172.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. S. Yudin
    • 1
  • R. B. Aitnazarov
    • 1
  • V. I. Ermolaev
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations