Expression of Pisum Sativum recombinant receptor proteins Sym10 and Sym37 involved in perception of lipochitooligosaccharide nod factors

  • E. A. Dolgikh
  • I. V. Leppyanen
  • V. A. Zhukov
  • V. E. Tsyganov
  • I. A. Tikhonovich


In the legume Rhizobium symbiosis, the Nod factors excreted by rhizobia trigger a complex of specific responses in the plant epidermis, pericycle, and root cortex, thereby providing a basis for subsequent bacterial entry and root nodule organogenesis. Nod factors are biologically active at low concentrations, and the specificity of their responses depends on the structural peculiarities of these molecules, suggesting the presence of high affinity receptors to Nod factors. Genetic analysis of pea mutants identified the genes necessary for symbiosis development and, among then, PsSym10 and PsSym37 encoding LysM-receptor-like kinases with LysM motifs (LysM-RLK) in the extracellular domain. These proteins are supposed to be potential receptors to Nod factors. However, there is no experimental evidence of the binding of Nod factors to the revealed LysM-RLK, which must confirm the biochemical function of receptors. For the most part, this is due to the problems with isolation of membrane receptors. In this work, heterologous expression of proteins SYM10 and SYM37 in bacterial cells was performed for the first time, the conditions for purification of recombinant proteins were optimized, and specific antibodies were obtained for further enzyme immunoassay of the two LysM-RLKs in legumes.


Pisum sativum L. Nod factors nodulation LysM receptors heterologous expression 


  1. Ane, J.-M., Kiss, G.B., Riely, B.K., et al., Medicago eruncatula DMI1 Required for Bacterial and Fungal Symbioses in Legumes, Science, 2004, vol. 303, pp. 1364–1367.PubMedCrossRefGoogle Scholar
  2. Ardourel, M., Demont, N., Debelle, F.D., et al., Rhizobium meliloti Lipooligosaccharide Nodulation Factors: Different Structural Requirements for Bacterial Entry into Target Root Hair-Cells and Induction of Plant Symbiotic Developmental Responses, Plant Cell, 1994, vol. 6, pp. 1357–1374.PubMedCrossRefGoogle Scholar
  3. Ben Amor, B., Shaw, S.L., Oldroyd, G.E.D., et al., The NFP Locus of Medicago truncatula Controls an Early Step of Nod Factor Signal Transduction Upstream of a Rapid Calcium Flux and Root Hair Deformation, Plant J., 2003, vol. 34, pp. 1–12.CrossRefGoogle Scholar
  4. Bateman, A. and Bycroft, M., The Structure of a LysM Domain from E. coli Membrane-Bound Lytic Murein Transglycosylase D (MltD), J. Mol. Biol., 2000, vol. 299, pp. 1113–1119.PubMedCrossRefGoogle Scholar
  5. Bertani, G., Studies on Lysogenesis. I. The Mode of Phage Liberation by Lysogenic Escherichia coli, J. Bacteriol., 1951, vol. 62, pp. 293–300.PubMedGoogle Scholar
  6. Birkeland, N.K., Cloning, Molecular Characterization, and Expression of the Genes Encoding the Lytic Functions of Lactococcal Bacteriophage Phi LC3: A Dual Lysis System of Modular Design, Can. J. Microbiol., 1994, vol. 40, pp. 658–665.PubMedCrossRefGoogle Scholar
  7. Borisov, A.Y., Barmicheva, E.M., Jacobi, L.M., et al., Pea (Pisum sativum L.) Mendelian Genes Controlling Development of Nitrogen-Fixing Nodules and Arbuscular Mycorrhiza, Czech J. Genet. Plant Breed., 2000, vol. 36, pp. 106–110.Google Scholar
  8. Catoira, R., Galera, C., de Billy, F., et al., Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway, Plant Cell, 2000, vol. 12, pp. 1647–1665.PubMedCrossRefGoogle Scholar
  9. Catoira, R., Timmers, A.C.J., Maillet, F., et al., The HCL Gene of Medicago truncatula Controls Rhizobiuminduced Root Hair Curling, Development, 2001, vol. 128, pp. 1507–1518.PubMedGoogle Scholar
  10. Ehrhardt, D.W., Atkinson, E.M., and Long, S.R., Depolarization of Alfalfa Root Hair Membrane Potential by Rhizobium meliloti Nod Factors, Science, 1992, vol. 256, pp. 998–1000.PubMedCrossRefGoogle Scholar
  11. Ehrhardt, D.W., Wais, R., and Long, S.R., Calcium Spiking in Plant Root Hairs Responding to Rhizobium Nodulation Signals, Cell, 1996, vol. 85, pp. 673–681.PubMedCrossRefGoogle Scholar
  12. Endre, G., Kereszt, A., Kevei, Z., et al., A Receptor Kinase Gene Regulating Symbiotic Nodule Development, Nature, 2002, vol. 417, pp. 962–966.PubMedCrossRefGoogle Scholar
  13. Heidstra, R. and Bisseling, T., Nod Factor-Induced Host Responses and Mechanisms of Nod Factor Perception, New Phytol., 1996, vol. 133, pp. 25–43.CrossRefGoogle Scholar
  14. Imaizumi-Anraku, H., Takeda, N., Charpentier, M., et al., Plastid Proteins Crucial for Symbiotic Fungal and Bacterial Entry into Plant Roots, Nature, 2006, vol. 433, pp. 527–531.CrossRefGoogle Scholar
  15. Joris, B., Englebert, S., Chu, C.P., et al., Modular Design of the Enterococcus hirae Muramidase-2 and Streptococcus faecalis Autolysin, FEMS Microbiol. Letts., 1992, vol. 70, pp. 257–264.CrossRefGoogle Scholar
  16. Kanamori, N., Madsen, L.H., Radutoiu, S., et al., A Nucleoporin Is Required for Induction of Ca2+ Spiking in Legume Nodule Development and Essential for Rhizobial and Fungal Symbiosis, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 359–364.PubMedCrossRefGoogle Scholar
  17. Levy, J., Bres, C., Geurts, R., et al., A Putative Ca2+ and Calmodulin-Dependent Protein Kinase Required for Bacterial and Fungal Symbioses, Science, 2004, vol. 303, pp. 1361–1363.PubMedCrossRefGoogle Scholar
  18. Limpens, E., Franken, C., Smit, P., et al., LysM Domain Receptor Kinases Regulating Rhizobial Nod Factor-Induced Infection, Science, 2003, vol. 302, pp. 630–633.PubMedCrossRefGoogle Scholar
  19. Lombardo, F., Heckmann, A.B., Miwa, H., et al., Identification of Symbiotically Defective Mutants of Lotus japonicus Affected in Infection Thread Growth, Mol. Plant Microbe Interact., 2006, vol. 19, pp. 1444–1450.PubMedCrossRefGoogle Scholar
  20. Madsen, E.B., Madsen, L.H., Radutoiu, S., et al., A Receptor Kinase Gene of the LysM Type Is Involved in Legume Perception of Rhizobial Signals, Nature, 2003, vol. 425, pp. 637–640.PubMedCrossRefGoogle Scholar
  21. Miroux, B. and Walker, J.E., Over-Production of Proteins in Escherichia coli: Mutant Hosts That Allow Synthesis of Some Membrane Proteins and Globular Proteins at High Levels, J. Mol Biol., 1996, vol. 260, pp. 289–298.PubMedCrossRefGoogle Scholar
  22. Mitra, R.M., Gleason, C.A., Edwards, A., et al., A Ca2+/Calmodulin-Dependent Protein Kinase Required for Symbiotic Nodule Development: Gene Identification by Transcript-Based Cloning, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 4701–4705.PubMedCrossRefGoogle Scholar
  23. Mulder, L., Lefebvre, B., Cullimore, J., and Imberty, A., LysM Domains of Medicago truncatula NFP Protein Involved in Nod Factor Perception. Glycosylation State, Molecular Modeling and Docking of Chitooligosaccharides and Nod Factors, Glycobiology, 2006, vol. 16, pp. 801–809.PubMedCrossRefGoogle Scholar
  24. Oldroyd, G.E.D. and Long, S.R., Identification and Characterization of Nodulation-Pathway 2, a Gene of Medicago truncatula Involved in Nod Factor, Plant Physiol., 2003, vol. 131, pp. 1027–1032.PubMedCrossRefGoogle Scholar
  25. Radutoiu, S., Madsen, L.H., Madsen, E.B., et al., Plant Recognition of Symbiotic Bacteria Requires Two LysM Receptor-Like Kinases, Nature, 2003, vol. 425, pp. 569–570.CrossRefGoogle Scholar
  26. Radutoiu, S., Madsen, L.H., Madsen, E.B., et al., LysM Domains Mediate Lipochitin-Oligosaccharide Recognition and Nfr Genes Extend the Symbiotic Host Range, EMBO J., 2007, vol. 26, pp. 3923–3935.PubMedCrossRefGoogle Scholar
  27. Roth, L.E. and Stacey, G., Rhizobium-Legume Symbiosis, in Microbial Cell-Cell Interactions, Dworkin, M., Ed., American Society of Microbiology, Washington, 1991, pp. 255–301.Google Scholar
  28. Schultze, M. and Kondorosi, A., Regulation of Symbiotic Root Nodule Development, Ann. Rev. Genet., 1998, vol. 32, pp. 33–57.PubMedCrossRefGoogle Scholar
  29. Smit, P., Limpens, E., Geurts, R., et al., Medicago LYK3, An Entry Receptor in Rhizobial Nod Factor, Plant Physiol., 2007, vol. 145, pp. 183–191.PubMedCrossRefGoogle Scholar
  30. Spaink, H.P., Sheeley, D.M., van Brussel, A.A.N., et al., A Novel Highly Unsaturated Fatty Acid Moiety of Lipooligosaccharide Signals Determines Host Specificity of Rhizobium, Nature, 1991, vol. 354, pp. 125–130.PubMedCrossRefGoogle Scholar
  31. Spaink, H.P., Root Nodulation and Infection Factors Produced by Rhizobial Bacteria, Annu. Rev. Microbiol., 2000, vol. 54, pp. 257–288.PubMedCrossRefGoogle Scholar
  32. Steinle, A., Li, P., Morris, D.L., et al., Interactions of Human NKG2D with Its Ligands MICA, MICB, and Homologs of the Mouse RAE-1 Protein Family, Immunogenetics, 2001, vol. 53, pp. 279–287.PubMedCrossRefGoogle Scholar
  33. Tsyganov, V.E., Voroshilova, V.A., Priefer, U.B., et al., Genetic Dissection of the Initiation of the Infection Process and Nodule Tissue Development in the Rhizobium-Pea (Pisum sativum, L.) Symbiosis, Ann. Bot., 2002, vol. 89, pp. 357–366.PubMedCrossRefGoogle Scholar
  34. Walker, S.A. and Downie, J.A., Entry of Rhizobium leguminosarum bv. viciae into Root Hairs Requires Minimal Nod Factor Specificity, but Subsequent Infection Thread Growth Requires NodO and NodE, Mol. Plant Microbe Interact., 2000, vol. 13, pp. 754–762.PubMedCrossRefGoogle Scholar
  35. Walker, S.A., Viprey, V., and Downie, J.A., Dissection of Nodulation using Pea Mutants Defective for Calcium Spiking Induced by Nod Factors and Chitin Oligomers, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 13413–14418.PubMedCrossRefGoogle Scholar
  36. Wieles, B., Noort, J., Drijfhout, J.W., et al., Purification and Functional Analysis of the Mycobacterium leprae Thioredoxin/Thioredoxin Reductase Hybrid Protein, J. Biol. Chem., 1995, vol. 270, pp. 25604–25606.PubMedCrossRefGoogle Scholar
  37. Zhukov, V., Radutoiu, S., Madsen, L.H., et al., The Pea Sym37 Receptor Kinase Gene Controls Infection Thread Initiation and Nodule Development, Mol. Plant Microbe Interact., 2008, vol. 21, pp. 1600–1608.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • E. A. Dolgikh
    • 1
  • I. V. Leppyanen
    • 1
  • V. A. Zhukov
    • 1
  • V. E. Tsyganov
    • 1
  • I. A. Tikhonovich
    • 1
  1. 1.Chair of Molecular and Cell BiologyAll-Russia Research Institute for Agricultural MicrobiologySt. PetersburgRussia

Personalised recommendations