Skip to main content
Log in

Mutation processes in oxidative stress preadapted animals

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The present paper deals with the problem of the preadaptation of the metabolic system of newborn rats to hyperbaric oxygenation (HBO) (0.2 MPa) induced oxidative stress, as well as with the assessment of the longevity of a metabolic track that is observed after such treatment. A possible increase in resistance of the animals to the oxidative stress induced by hyperbaric oxygenation (0.5 MPa) after preadaptation in the early neonatal period is discussed. Long-term mutation processes after preadaptation are studied. Changes in the reaction norm to oxidative stress in the progeny of reciprocal crossbreedings of preadapted rats are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baraboi, V.A., Mechanisms of Stress and Lipid Peroxidation, Usp. Sovrem. Biol., 2002, vol. 3, pp. 923–931.

    Google Scholar 

  2. Bren’, A.B., Genetic and Biochemical Features of Preadaptation of Mammals to Oxidative Stress, Extended Abstract of Candidate’s (Biol.) Dissertation, Rostov-on-Don, 1997.

  3. Vladimirov, Yu.A., Perekisnoe okislenie lipidov v biologicheskikh membranakh (Lipid Peroxidation in Biological Membranes), Moscow: Nauka, 1993.

    Google Scholar 

  4. Vladimirov, Yu.A., Azizova, O.A., and Deev, A.I., Free Radicals in Living Systems, Itogi Nauki Tekhniki. Ser. Biofizika (Advances in Science and Technology, Ser. Biophysics), 1991, vol. 29, pp. 156–162.

    Google Scholar 

  5. Vladimirov, Yu.A., Three Hypotheses on the Mechanism of Action of Laser Irradiation on Cells and the Human Body, Efferent. Med., 1994, pp. 51–67.

  6. Garkavi, L.X., Kvakina, E.B., and Ukolova, M.A., Adaptatsionnye reaktsii i rezistentnost’ organizma (Adaptive Response and Resistance of the Organism), Rostov-on-Don: Izd. Rostov. Univ., 1990.

    Google Scholar 

  7. Gus’kov, E.P. and Lukash, A.I., Izbytochnost’ fenotipa, oksigennyi mutagenez i kontseptsiya protektornogo katabolizma (Redundancy of Phenotype, Oxygenic Mutagenesis, and the Concept of the Protective Catabolism), Moscow, 1987. Deposited in VINITI no. 95143.

  8. Gus’kov, E.P., Timofeeva, I.V., Milyutina, I.P., et al., The Effect of Hyperbaric Oxygenation on the Antioxidant Status of Xenopus laevis after Its Preliminary Adaptation to Oxygen, Ontogenez, 1999, vol. 30, no. 2, pp. 91–96.

    PubMed  Google Scholar 

  9. Gus’kov, E.P. and Shkurat, T.P., Cytogenetic Consequences of Hyperbaric Oxygenation in the Sequence of Cell Cycles of Human Peripheral Blood Lymphocytes, Genetika, 1985, vol. 21, no. 8, pp. 68–75.

    Google Scholar 

  10. Gus’kov, E.P., Shkurat, T.P., Belichenko, I.I., and Kazantseva, I.V., Modeling the Cytogenetic Consequences Hyperbaric Therapy on Proliferating Tissues of Animals, in Materialy dokladov IV Vsearmeiskoi nauchno-pedagogicheskoi konferentsii s mezhdunarodnym uchastiem “Baroterapiya v kompleksnom lechenii i reabilitatsii ranenykh, bol’nykh i porazhennykh” 24–25 maya 2000 g (Proceedings of IV All-Army Science and Pedagogical Conference with International Participation “Barotherapy in Complex Treatment and Rehabilitation of Wounded and Affected Men and Patients,” May 24–25, 2000), St. Petersburg, 2000.

  11. Darlington, S.D. and Cur, L.F., Khromosomy. Metody raboty (Chromosomes: Methods of Work), Moscow: Atomizdat, 1980.

    Google Scholar 

  12. Zenkov, N.K, Lankin, V.Z., and Men’shchikova, E.B., Okislitel’nyi stress (Oxidative Stress), Moscow: Nauka/Interperiodika, 2001.

    Google Scholar 

  13. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya shkola, 1990.

    Google Scholar 

  14. Meerson, F.Z., Adaptatsiya, stress i profilaktika (Adaptation, Stress, and Prophylaxis), Moscow: Nauka, 1981.

    Google Scholar 

  15. Olenov, Yu.M., Epigenomic Variation, Ontogenez, 2002, vol. 1, no. 1, pp. 10–16.

    Google Scholar 

  16. Opritov, V.A., Pyatygin, S.S., and Krauz, V.O., Analysis of the Role of Electrical Activity of Cells of Higher Plants in the Development of Adaptation Syndrome During Cooling, Fiziol. Rast., 1993, vol. 40, pp. 619–626.

    Google Scholar 

  17. Ptitsyn, L.R., Bioluminescent Analysis of the SOS-Response of Esherichia coli Cells, Genetika, 1996, vol. 32, no. 3, pp. 354–358.

    Google Scholar 

  18. Riger, R. and Mikhaelis, A., Geneticheskii i tsitogeneticheskii slovar’ (Genetic and Cytogenetic Dictionary), Moscow, 1967.

  19. Rutten, M.Y., Proiskhozhdenie zhizni (The Origin of Life), Moscow: Mir, 1973.

    Google Scholar 

  20. Timofeeva, I.V., Genetic and Biochemical Features of the Response of Xenopus laevis to Oxidative Stress, Extended Abstract of Candidate’s (Biol.) Dissertation, Rostov-on-Don, 1997.

  21. Ames, B.N., Cathead, R., Schwiers, E., and Hochstein, P., Uric Acid Provides an Antioxidant Defense in Humans Against Oxidant and Radical-Caused Aging and Cancer: A Hypothesis, Proc. Natl. Acad. Sci. USA, 1981, vol. 78, no. 11, pp. 6858–6862.

    Article  PubMed  CAS  Google Scholar 

  22. Ames, B.N. and Shigenaga, M.K., Oxidants Are a Major Contributor to Aging, Ann. N.Y. Acad. Sci., 1992, vol. 663, pp. 85–96.

    Article  PubMed  CAS  Google Scholar 

  23. Arai, J., Li, S., Hartley, D., and Feig, L., Transgenerational Rescue of a Genetic Defect in Long-Term Potentiation and Memory Formation by Juvenile Enrichment, J. Neurosci., 2009, vol. 29, no. 5, pp. 1496–1502.

    Article  PubMed  CAS  Google Scholar 

  24. Brown, W.M., Prager, E.H., Wang, A., and Wilson, A.C., Mitochondrial DNA Sequences of Primates; Tempo and Mode of Evolution, J. Mol. Ev., 1982, vol. 18, no. l, pp. 225–239.

    Article  CAS  Google Scholar 

  25. Bunout, D. and Cambiazo, V., Nutrition and Aging, Rev. Med. Chil., 1999, vol. 127, no. 1, pp. 82–88.

    PubMed  CAS  Google Scholar 

  26. Chiu, D.T.Y., Kuypers, F.A., and Lubin, B., Lipid Peroxidation in Human Red Cells, Semin. Hematol., 1989, vol. 26, pp. 257–276.

    PubMed  CAS  Google Scholar 

  27. Chiu, D.T.Y., and Liu, T.Z., Free Radical and Oxidative Damage in Human Blood Cells, J. Biomed. Sci., 1997, no. 4, pp. 256–259.

  28. Dennog, C., Hartmann, A., Frey, G., et al., Detection of DNA Damage after Hyperbaric Oxygen (HBO)Therapy, Mutagenesis, 1996, no. 11, pp. 605–609.

  29. Fekete, A., Emri, T., Gyetvai, A., et al., Development of Oxidative Stress Tolerance Resulted in Reduced Ability to Undergo Morphologic Transitions and Decreased Pathogenicity in a T-Butylhydroperoxide-Tolerant Mutant of Candida albicans, FEMS Yeast Res., 2007, no. 7, pp. 834–847.

  30. Jackson, A., Chen, R., and Loeb, L., Induction of Microsatellite Instability by Oxidative DNA Damage, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 21, pp. 12468–12473.

    Article  PubMed  CAS  Google Scholar 

  31. Joenje, H., Berg, J., and van Rijn, J., Lack of Cross-Resistance to X-Irradiation in Oxygen-Resistant Mammalian Cell Lines, J. Free Radic. Biol. Med., 1985, vol. 1, no. 4, pp. 307–310.

    Article  PubMed  CAS  Google Scholar 

  32. Kang, C, Kristal, B., and Yu, B., Age-Related Mitochondrial DNA Deletions-Effect of Dietary Restriction, Free Rad. Biol. Med., 1999, vol. 27, nos. 3–4, pp. 148–154.

    Google Scholar 

  33. Klein, M.B., Chan, P.K, and Chang, J., Protective Effects of Superoxide Dismutase against Ischemia-Reperfusion Injury: Development and Application of a Transgenic Animal Model, Plast. Reconstr. Surg., 2003, vol. 111, no. 1, pp. 251–255.

    Article  PubMed  Google Scholar 

  34. Luk’ianova, L.D., Molecular Mechanisms of Tissue Hypoxia and Organism Adaptation, Fiziol. Zh., 2003, vol. 49, pp. 17–35.

    PubMed  Google Scholar 

  35. Melov, S., Schneider, J.A., Day, B.J., Hinerfeld, D., et al., A Novel Neurological Phenotype in Mice Lacking Mitochondrial Manganese Superoxide Dismutase, Nat. Genet., 1998, vol. 18, pp. 99–100.

    Article  Google Scholar 

  36. Nanney, D.L., Epigenetic Control Systems, Proc. Natl. Acad. Sci. USA, 1958, no. 44, pp. 712–717.

  37. Patel, B.N. and David, S., A Novel Glycosylphosphatidylinositol-Anchored Form of Ceruloplasmin Is Expressed by Mammalian Astrocytes, J. Biol. Chem., 1997, no. 272, pp. 20185–20190.

  38. Rothfuss, A., Dennog, C., and Spelt, G., Adaptive Protection against the Induction of Oxidative DNA Damage after Hyperbaric Oxygen Treatment, Carcinogenesis, 1998, no. 19, pp. 1917–1921.

  39. Saada, H.N., Said, U.Z., Meky, N.H., et al., Grape Seed Extract Vitis vinifera Protects Against Radiation-Induced Oxidative Damage and Metabolic Disorders in Rats, Phiother. Res., 2008, no. 11, pp. 341–346.

  40. Sagan, L., On the Origin of Mitosing Cells, J. Theoret. Biol., 1967, no. 14, pp. 225–274.

  41. Samson, L. and Cairns, J., A New Pathway for DNA Repair in Escherichia coli, Nature, 1977, vol. 267, no. 5608, pp. 281–283.

    Article  PubMed  CAS  Google Scholar 

  42. Sasazuki, S., Hayashi T., Nakachi K., et al., Protective Effect of Vitamin C on Oxidative Stress: A Randomized Controlled Trial, Int. J. Vitam. Nutr. Res., 2008, vol. 78, no. 3, pp. 121–128.

    Article  PubMed  CAS  Google Scholar 

  43. Singh, K., Mitochondria Damage Checkpoint in Apoptosis and Genome Stability, FEMS Yeast Res., 2004, no. 2, pp. 127–132.

  44. Spelt, G., Adaptive Protection Against the Induction of Oxidative DNA Damage after Hyperbaric Oxygen Treatment, Carcinogenesis, 1998, no. 19, pp. 1913–1917.

  45. Strehl, R., Schumacher, K., and Minuth, W., Controlled Respiratory Gas Delivery to Embryonic Renal Epithelial Explants in Perfusion Culture, Tissue Eng., 2004, vol. 10, pp. 1196–1203.

    PubMed  CAS  Google Scholar 

  46. Surani, M.A., Silence of the Genes, Nature, 1993, vol. 366, pp. 302–303.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.P. Guskov, E.V. Mashkina, N.I. Belichenko, T.V. Varduni, G.I. Volosovtsova, I.O. Pokudina, G.E. Guskov, T.P. Shkurat, 2009, published in Ekologicheskaya Genetika, 2009, Vol. 7, No. 1, pp. 41–48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guskov, E.P., Mashkina, E.V., Belichenko, N.I. et al. Mutation processes in oxidative stress preadapted animals. Russ J Genet Appl Res 1, 112–118 (2011). https://doi.org/10.1134/S2079059711020018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059711020018

Keywords

Navigation