Mutation processes in oxidative stress preadapted animals

  • E. P. Guskov
  • E. V. Mashkina
  • N. I. Belichenko
  • T. V. Varduni
  • G. I. Volosovtsova
  • I. O. Pokudina
  • G. E. Guskov
  • T. P. Shkurat


The present paper deals with the problem of the preadaptation of the metabolic system of newborn rats to hyperbaric oxygenation (HBO) (0.2 MPa) induced oxidative stress, as well as with the assessment of the longevity of a metabolic track that is observed after such treatment. A possible increase in resistance of the animals to the oxidative stress induced by hyperbaric oxygenation (0.5 MPa) after preadaptation in the early neonatal period is discussed. Long-term mutation processes after preadaptation are studied. Changes in the reaction norm to oxidative stress in the progeny of reciprocal crossbreedings of preadapted rats are assessed.


preadaptation adaptation oxidative stress chromosome aberrations SOS lux test stress-inducing treatment maternal hereditary hyperbaric oxygenation at 0.2 MPa 


  1. 1.
    Baraboi, V.A., Mechanisms of Stress and Lipid Peroxidation, Usp. Sovrem. Biol., 2002, vol. 3, pp. 923–931.Google Scholar
  2. 2.
    Bren’, A.B., Genetic and Biochemical Features of Preadaptation of Mammals to Oxidative Stress, Extended Abstract of Candidate’s (Biol.) Dissertation, Rostov-on-Don, 1997.Google Scholar
  3. 3.
    Vladimirov, Yu.A., Perekisnoe okislenie lipidov v biologicheskikh membranakh (Lipid Peroxidation in Biological Membranes), Moscow: Nauka, 1993.Google Scholar
  4. 4.
    Vladimirov, Yu.A., Azizova, O.A., and Deev, A.I., Free Radicals in Living Systems, Itogi Nauki Tekhniki. Ser. Biofizika (Advances in Science and Technology, Ser. Biophysics), 1991, vol. 29, pp. 156–162.Google Scholar
  5. 5.
    Vladimirov, Yu.A., Three Hypotheses on the Mechanism of Action of Laser Irradiation on Cells and the Human Body, Efferent. Med., 1994, pp. 51–67.Google Scholar
  6. 6.
    Garkavi, L.X., Kvakina, E.B., and Ukolova, M.A., Adaptatsionnye reaktsii i rezistentnost’ organizma (Adaptive Response and Resistance of the Organism), Rostov-on-Don: Izd. Rostov. Univ., 1990.Google Scholar
  7. 7.
    Gus’kov, E.P. and Lukash, A.I., Izbytochnost’ fenotipa, oksigennyi mutagenez i kontseptsiya protektornogo katabolizma (Redundancy of Phenotype, Oxygenic Mutagenesis, and the Concept of the Protective Catabolism), Moscow, 1987. Deposited in VINITI no. 95143.Google Scholar
  8. 8.
    Gus’kov, E.P., Timofeeva, I.V., Milyutina, I.P., et al., The Effect of Hyperbaric Oxygenation on the Antioxidant Status of Xenopus laevis after Its Preliminary Adaptation to Oxygen, Ontogenez, 1999, vol. 30, no. 2, pp. 91–96.PubMedGoogle Scholar
  9. 9.
    Gus’kov, E.P. and Shkurat, T.P., Cytogenetic Consequences of Hyperbaric Oxygenation in the Sequence of Cell Cycles of Human Peripheral Blood Lymphocytes, Genetika, 1985, vol. 21, no. 8, pp. 68–75.Google Scholar
  10. 10.
    Gus’kov, E.P., Shkurat, T.P., Belichenko, I.I., and Kazantseva, I.V., Modeling the Cytogenetic Consequences Hyperbaric Therapy on Proliferating Tissues of Animals, in Materialy dokladov IV Vsearmeiskoi nauchno-pedagogicheskoi konferentsii s mezhdunarodnym uchastiem “Baroterapiya v kompleksnom lechenii i reabilitatsii ranenykh, bol’nykh i porazhennykh” 24–25 maya 2000 g (Proceedings of IV All-Army Science and Pedagogical Conference with International Participation “Barotherapy in Complex Treatment and Rehabilitation of Wounded and Affected Men and Patients,” May 24–25, 2000), St. Petersburg, 2000.Google Scholar
  11. 11.
    Darlington, S.D. and Cur, L.F., Khromosomy. Metody raboty (Chromosomes: Methods of Work), Moscow: Atomizdat, 1980.Google Scholar
  12. 12.
    Zenkov, N.K, Lankin, V.Z., and Men’shchikova, E.B., Okislitel’nyi stress (Oxidative Stress), Moscow: Nauka/Interperiodika, 2001.Google Scholar
  13. 13.
    Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya shkola, 1990.Google Scholar
  14. 14.
    Meerson, F.Z., Adaptatsiya, stress i profilaktika (Adaptation, Stress, and Prophylaxis), Moscow: Nauka, 1981.Google Scholar
  15. 15.
    Olenov, Yu.M., Epigenomic Variation, Ontogenez, 2002, vol. 1, no. 1, pp. 10–16.Google Scholar
  16. 16.
    Opritov, V.A., Pyatygin, S.S., and Krauz, V.O., Analysis of the Role of Electrical Activity of Cells of Higher Plants in the Development of Adaptation Syndrome During Cooling, Fiziol. Rast., 1993, vol. 40, pp. 619–626.Google Scholar
  17. 17.
    Ptitsyn, L.R., Bioluminescent Analysis of the SOS-Response of Esherichia coli Cells, Genetika, 1996, vol. 32, no. 3, pp. 354–358.Google Scholar
  18. 18.
    Riger, R. and Mikhaelis, A., Geneticheskii i tsitogeneticheskii slovar’ (Genetic and Cytogenetic Dictionary), Moscow, 1967.Google Scholar
  19. 19.
    Rutten, M.Y., Proiskhozhdenie zhizni (The Origin of Life), Moscow: Mir, 1973.Google Scholar
  20. 20.
    Timofeeva, I.V., Genetic and Biochemical Features of the Response of Xenopus laevis to Oxidative Stress, Extended Abstract of Candidate’s (Biol.) Dissertation, Rostov-on-Don, 1997.Google Scholar
  21. 21.
    Ames, B.N., Cathead, R., Schwiers, E., and Hochstein, P., Uric Acid Provides an Antioxidant Defense in Humans Against Oxidant and Radical-Caused Aging and Cancer: A Hypothesis, Proc. Natl. Acad. Sci. USA, 1981, vol. 78, no. 11, pp. 6858–6862.PubMedCrossRefGoogle Scholar
  22. 22.
    Ames, B.N. and Shigenaga, M.K., Oxidants Are a Major Contributor to Aging, Ann. N.Y. Acad. Sci., 1992, vol. 663, pp. 85–96.PubMedCrossRefGoogle Scholar
  23. 23.
    Arai, J., Li, S., Hartley, D., and Feig, L., Transgenerational Rescue of a Genetic Defect in Long-Term Potentiation and Memory Formation by Juvenile Enrichment, J. Neurosci., 2009, vol. 29, no. 5, pp. 1496–1502.PubMedCrossRefGoogle Scholar
  24. 24.
    Brown, W.M., Prager, E.H., Wang, A., and Wilson, A.C., Mitochondrial DNA Sequences of Primates; Tempo and Mode of Evolution, J. Mol. Ev., 1982, vol. 18, no. l, pp. 225–239.CrossRefGoogle Scholar
  25. 25.
    Bunout, D. and Cambiazo, V., Nutrition and Aging, Rev. Med. Chil., 1999, vol. 127, no. 1, pp. 82–88.PubMedGoogle Scholar
  26. 26.
    Chiu, D.T.Y., Kuypers, F.A., and Lubin, B., Lipid Peroxidation in Human Red Cells, Semin. Hematol., 1989, vol. 26, pp. 257–276.PubMedGoogle Scholar
  27. 27.
    Chiu, D.T.Y., and Liu, T.Z., Free Radical and Oxidative Damage in Human Blood Cells, J. Biomed. Sci., 1997, no. 4, pp. 256–259.Google Scholar
  28. 28.
    Dennog, C., Hartmann, A., Frey, G., et al., Detection of DNA Damage after Hyperbaric Oxygen (HBO)Therapy, Mutagenesis, 1996, no. 11, pp. 605–609.Google Scholar
  29. 29.
    Fekete, A., Emri, T., Gyetvai, A., et al., Development of Oxidative Stress Tolerance Resulted in Reduced Ability to Undergo Morphologic Transitions and Decreased Pathogenicity in a T-Butylhydroperoxide-Tolerant Mutant of Candida albicans, FEMS Yeast Res., 2007, no. 7, pp. 834–847.Google Scholar
  30. 30.
    Jackson, A., Chen, R., and Loeb, L., Induction of Microsatellite Instability by Oxidative DNA Damage, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 21, pp. 12468–12473.PubMedCrossRefGoogle Scholar
  31. 31.
    Joenje, H., Berg, J., and van Rijn, J., Lack of Cross-Resistance to X-Irradiation in Oxygen-Resistant Mammalian Cell Lines, J. Free Radic. Biol. Med., 1985, vol. 1, no. 4, pp. 307–310.PubMedCrossRefGoogle Scholar
  32. 32.
    Kang, C, Kristal, B., and Yu, B., Age-Related Mitochondrial DNA Deletions-Effect of Dietary Restriction, Free Rad. Biol. Med., 1999, vol. 27, nos. 3–4, pp. 148–154.Google Scholar
  33. 33.
    Klein, M.B., Chan, P.K, and Chang, J., Protective Effects of Superoxide Dismutase against Ischemia-Reperfusion Injury: Development and Application of a Transgenic Animal Model, Plast. Reconstr. Surg., 2003, vol. 111, no. 1, pp. 251–255.PubMedCrossRefGoogle Scholar
  34. 34.
    Luk’ianova, L.D., Molecular Mechanisms of Tissue Hypoxia and Organism Adaptation, Fiziol. Zh., 2003, vol. 49, pp. 17–35.PubMedGoogle Scholar
  35. 35.
    Melov, S., Schneider, J.A., Day, B.J., Hinerfeld, D., et al., A Novel Neurological Phenotype in Mice Lacking Mitochondrial Manganese Superoxide Dismutase, Nat. Genet., 1998, vol. 18, pp. 99–100.CrossRefGoogle Scholar
  36. 36.
    Nanney, D.L., Epigenetic Control Systems, Proc. Natl. Acad. Sci. USA, 1958, no. 44, pp. 712–717.Google Scholar
  37. 37.
    Patel, B.N. and David, S., A Novel Glycosylphosphatidylinositol-Anchored Form of Ceruloplasmin Is Expressed by Mammalian Astrocytes, J. Biol. Chem., 1997, no. 272, pp. 20185–20190.Google Scholar
  38. 38.
    Rothfuss, A., Dennog, C., and Spelt, G., Adaptive Protection against the Induction of Oxidative DNA Damage after Hyperbaric Oxygen Treatment, Carcinogenesis, 1998, no. 19, pp. 1917–1921.Google Scholar
  39. 39.
    Saada, H.N., Said, U.Z., Meky, N.H., et al., Grape Seed Extract Vitis vinifera Protects Against Radiation-Induced Oxidative Damage and Metabolic Disorders in Rats, Phiother. Res., 2008, no. 11, pp. 341–346.Google Scholar
  40. 40.
    Sagan, L., On the Origin of Mitosing Cells, J. Theoret. Biol., 1967, no. 14, pp. 225–274.Google Scholar
  41. 41.
    Samson, L. and Cairns, J., A New Pathway for DNA Repair in Escherichia coli, Nature, 1977, vol. 267, no. 5608, pp. 281–283.PubMedCrossRefGoogle Scholar
  42. 42.
    Sasazuki, S., Hayashi T., Nakachi K., et al., Protective Effect of Vitamin C on Oxidative Stress: A Randomized Controlled Trial, Int. J. Vitam. Nutr. Res., 2008, vol. 78, no. 3, pp. 121–128.PubMedCrossRefGoogle Scholar
  43. 43.
    Singh, K., Mitochondria Damage Checkpoint in Apoptosis and Genome Stability, FEMS Yeast Res., 2004, no. 2, pp. 127–132.Google Scholar
  44. 44.
    Spelt, G., Adaptive Protection Against the Induction of Oxidative DNA Damage after Hyperbaric Oxygen Treatment, Carcinogenesis, 1998, no. 19, pp. 1913–1917.Google Scholar
  45. 45.
    Strehl, R., Schumacher, K., and Minuth, W., Controlled Respiratory Gas Delivery to Embryonic Renal Epithelial Explants in Perfusion Culture, Tissue Eng., 2004, vol. 10, pp. 1196–1203.PubMedGoogle Scholar
  46. 46.
    Surani, M.A., Silence of the Genes, Nature, 1993, vol. 366, pp. 302–303.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • E. P. Guskov
    • 1
  • E. V. Mashkina
    • 1
  • N. I. Belichenko
    • 1
  • T. V. Varduni
    • 1
  • G. I. Volosovtsova
    • 1
  • I. O. Pokudina
    • 1
  • G. E. Guskov
    • 1
  • T. P. Shkurat
    • 1
  1. 1.Research Institute for BiologySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations