The contribution of genotype-environmental effects to the formation of qualitative traits of inbred and outbred plants



An assumption about the epigenetic nature of genotype-environment interaction is made and proven. When genetic variances in descendants of various ages are analyzed, this interaction manifests itself as epistasis. Study of inbred (common spring wheat) and outbred (hybrid maize) forms shows that their contribution of genotype-environmental factors to quantitative traits in hybrids is less than in homozygous forms. With regard to the substantially epigenetic nature of the genotype-environmental interaction, this trend can be explained in terms of the epigenetic balance hypothesis.


genotype-environmental interplay epigenetic variability epistasis epigenetic balance wheat maize 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batson, W., Mendel’s Principles of Heredity, Ed. W. Batson, Cambridge, 1909.Google Scholar
  2. Blanc, G., Charcosset, A., and Mangin, B., et al., Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize, Theor. Appl. Genet., 2006, vol. 113, no. 2, pp. 206–224.PubMedCrossRefGoogle Scholar
  3. Börner, A., Schumann, E., and Frste, A., et al., Mapping of Quantitative Trait Loci Determining Agronomic Important Characters in Hexaploid Wheat (Triticum Aestivum, L.), Theor. Appl. Genet., 2002, vol. 105, pp. 921–936.PubMedCrossRefGoogle Scholar
  4. Brink, R. A., A genetic change associated with the R locus in maize which is directed and potentially reversible, Genetics, 1956, vol. 41, pp. 872–889.PubMedGoogle Scholar
  5. Brink, R. A., Paramutation and chromosome organization, Quart. Rev. Biol., 1960, vol. 35, pp. 120–137.PubMedCrossRefGoogle Scholar
  6. Caligari, P. D. S., Mather, K., Genotype × environment interaction. III. Interactions in Drosophila melanogaster, Proc. R. Soc. Lond., 1975, B. 191, pp. 387–411.PubMedCrossRefGoogle Scholar
  7. Chang, S., Whitelaw, E., Epigenetic germline inheritance, Curr. Opin. Genet. and Developm., 2004, vol. 14, pp. 692–696.CrossRefGoogle Scholar
  8. Chesnokov, Yu. V., Pochepnya, N. V., Berner, A., et al., Ecological-Genetic Organization of Plant Quantitative Traits and Mapping of the Loci Determining Agronomically Important Traits in Soft Wheat, Dokl. Akad. Nauk, 2008, vol. 418, no. 5, pp. 693–696 [Dokl. Biochem. Biophys. (Engl. Transl.), 2008, vol. 418, no. 5, pp. 36–39].Google Scholar
  9. Connoly, V., Jinks, I. L.,: The genetical architecture of general and specific environmental sensitivity, Heredity, 1975, vol. 35, P. 2, pp. 249–259.CrossRefGoogle Scholar
  10. Dorn, L. A., Schmitt, J., Do plasticity genes exist or not?, Progr. Abstr. of 6th Congr. Eur. Soc. Evol. Biol., Arnehm, 24–28 August, 1997, Wagenibgen, 1977.Google Scholar
  11. Dragavtsev, V. A. and Aver’yanova, A. F., Mechanisms of Genotype-Environmental Interactions and Homeostasis of Quantitative Traits of Plants, Genetika, 1983a, vol. 19, no. 11, pp. 1806–1810.Google Scholar
  12. Dragavtsev, V. A. and Aver’yanova, A. F., Overdetermination of Genetic Formulas of Quantitative Traits under Different Environmental Conditions, Genetika, 1983b, vol. 19, no. 11, p. 1811.Google Scholar
  13. Dragavtsev, V. A., Tsil’ke, R. A., Reiter, B. G., et al., Genetika priznakov produktivnosti yarovykh pshenits v Zapadnoi Sibiri (Genetics of Spring Wheat Productivity in the Western Siberia), Novosibirsk, 1984, p. 230Google Scholar
  14. Durrant, A., Environmental conditioning of flax, Nature, 1958, vol. 181, pp. 928–929.CrossRefGoogle Scholar
  15. Durrant, A., The environmental induction of heritable changes in Linum, Heredity, 1962, vol. 17, pp. 27–61.CrossRefGoogle Scholar
  16. Evans, G. M., Nuclear changes in flax, Heredity, 1968, vol. 23. pp. 25–28.CrossRefGoogle Scholar
  17. Falconer, D. S., Introduction to Quantitative Genetics. 2nd Ed, New York: Longman Sci. Techn., 1981, p. 438.Google Scholar
  18. Fisher, R. A., The correlations between relatives on the supposition of Mendelian inheritance, Trans. Roy. Soc. Edinbourg, 1918, vol. 52, pp. 399–433.Google Scholar
  19. Hill, J., Genotype-environment interactions — a challenge for plant breeding, J. Agric. Sci., 1975, vol. 85, P. 3. pp. 477–498.CrossRefGoogle Scholar
  20. Hill, J., Perkins, J. M., The environmental induction of heritable changes in Nicotiana rustica: effect of geno-type-environment interactions, Genetics, 1969, vol. 61, pp. 661–675.PubMedGoogle Scholar
  21. Hill, J., The environmental induction of heritable changes in Nicotiana rustica: Parental and selection lines, Genetics, 1967, vol. 55, pp. 735–754.PubMedGoogle Scholar
  22. Holland, J.B., Epistasis and plant breeding, Plant Breed. Rev., 2001, vol. 21, pp. 27–92.Google Scholar
  23. Hull, P., Gove, R. S., Slen, S. B., and Crawford, R. D., A comparison of the interaction, with two types of environment, of pure strains or strain crosses of poultry, Genet. Res., 1963, vol. 4, pp. 370–381.CrossRefGoogle Scholar
  24. Jinks, J. L., and Pooni H. S., Determination of the environmental sensitivity of selection lines of Nicotiana rustica by the selection environment, Heredity, 1982, vol. 49, no. 3, pp. 291–294.CrossRefGoogle Scholar
  25. Jinks, J. L., Jayasekara, N. E. M., and Boughey, H., Joint selection for both extremes of mean performance and of sensitivity to a macroenvironmental variable. I. Single seed descent, Heredity, 1977, vol. 39, no. 3, pp. 345–355.CrossRefGoogle Scholar
  26. Juengei, T. E., Son, S., Stowe, K. A., and Simms, E. L., Epistasis and genotype-environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana, Genetica, 2005, vol.123, no. 1/2, pp. 87–105.CrossRefGoogle Scholar
  27. Katokhin, A. V., Kuznetsova, T. N., and Omel’yanchuk, N. A., (Micro-RNA-Novel Regulators of Eukaryotic Gene Activity), Informatsyionni Vestnik, VOGiS, 2006, vol.10, no. 2, pp. 241–272.Google Scholar
  28. Kil’chevskii, A. V. and Khotyleva, L. V., Ekologicheskaya selektsiya rastenii (Ecological Selection of Plants), Minsk: Tekhnalogiya, 1997.Google Scholar
  29. Korochkin, L. I., What is Epigenetics, Genetika, 2006, vol. 42, no. 9, pp. 1156–1164.PubMedGoogle Scholar
  30. Landry, C. R., Oh, J., Hartl, D. L., and Cavalieri, D., Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes, Gene, 2006, vol. 366, pp. 343–351.PubMedCrossRefGoogle Scholar
  31. Li, Y., Alvarez, O. A., Gutteling, F. W., et al., Mapping determinants of gene expression plasticity by genetical genomics in C. elegans[ital], PLOS Genet., 2006, vol. 2, p. 222.CrossRefGoogle Scholar
  32. Malmberg, R. L., Held, S., Waits, A., and Mauricio, R., Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and the greenhouse, Genetics, 2006, vol. 171, no. 4, pp. 2012–2027.Google Scholar
  33. Parsons, P. A., Genotypic-environmental interactions for various temperatures in Drosophila melanogaster, Genetics, 1959, vol. 44, no. 6, pp. 1325–1333.PubMedGoogle Scholar
  34. Paterson, A. H., Damon, S., Hewitt, J. D., et al., Mendelian factors ungerlying quantitative traits in tomato: Comparison across species, generations, and environments, Genetics, 1991, vol. 127, pp. 181–197.PubMedGoogle Scholar
  35. Plokhinskii, N. A., Matematicheskie Metody v Biologii (Mathematical Methods in Biology), Moscow: Moscow State University, 1978.Google Scholar
  36. Plomin, R., DeFries, J. C., and Loehlin, J. C., Genotypicenvironmental interactions and correlation in the analysis of human behavior, Psychol. Bull., 1977, vol. 84, no. 2, pp. 309–322.PubMedCrossRefGoogle Scholar
  37. Rokitskii, P. F., Biologicheskaya statistika (Biological Statistics), Minsk: Vysheish. shk., 1973.Google Scholar
  38. Rutter, M., Moffitt, T. E., and Caspi, A., Gene-environment interplay and psychopathology: multiple varieties but real effects, J. Child Psychol. Psychiatry, 2006, vol. 47, no. 3/4. pp. 226–261.PubMedCrossRefGoogle Scholar
  39. Smith, E. N., and Kruglyak, L., Gene-environment interaction in yeast gene expression, PLOS Biol., 2008, vol. 6, no. 4, p. 83.CrossRefGoogle Scholar
  40. Syukov, V. V., Genetical Substantiation of Background Choice for Quantitative Trait Selection, in Problemy Intensifikatsii i Ekologizatsii Zemledeliya Rossii. Materialy nauchno-prakticheskoy. konferencii June 2006 (Problems of Intensification and Ecological Approaches for Agriculture in Russia. Proceedings of Theoretical and Practical Conference) Rassvet, 2006, pp. 458–462.Google Scholar
  41. Syukov, V. V., Zakharov, V. G., Krivobochek, V. G., et al., Metod otbora genotipov yarovoi myagkoi pshenitsy na gomeoadaptivnost’: Metod. ukazaniya (Method of Selection of Soft Spring Wheat for Gomeoadaptivity), Samara, 2008.Google Scholar
  42. Ungerer, M. C., Halldorsdottir, S. S., Purugganon, M. D., and Mackay, T. F., Genotype-environmental interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana, Genetics, 2003, vol. 165, pp. 353–365.PubMedGoogle Scholar
  43. Vavilov, N. I., Scientific Principles of Wheat Selection, in Teoreticheskie osnovy selektsii rastenii (Theoretical Principles of Plant Selection) vol. 2, Moscow: Leningrad, 1935, pp. 3–214.Google Scholar
  44. Wade, M. J., Winther, R. G., Agrawal, A. F., and Goodnight, C. J. Alternative definitions of epistasis: dependence and interaction, Trends Ecol. Evol., 201, vol. 16, no. 9, pp. 498–504.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. V. Syukov
    • 1
  • E. V. Madyakin
    • 1
  • D. V. Kochetkov
    • 1
  1. 1.Government Scientific Establishment, Tulaykov Research Institute for Agriculture of SamaraRussian Academy of Agricultural SciencesBezenchukRussia

Personalised recommendations