Advances in Gerontology

, Volume 6, Issue 4, pp 322–327 | Cite as

Luzindole accelerates the aging of estrous function of female rats

  • O. V. Zhukova
  • E. S. Obukhova
  • E. A. Khizhkin
  • V. A. Ilukha
  • I. A. Vinogradova


In this paper, we investigated the dynamics of aging of the estrous function of female rats kept in the conditions of standard vivarium lighting that received luzindolee—a blocker of melatonin receptors. Every three months, daily, for two weeks, vaginal smears were taken from the animals and a cytological examination of the vaginal contents was conducted. Despite the difference in the mechanisms of the development of melatonin system failure (a decreased production of melatonin and a blockade of melatonin receptors), the effects of the influence on the ovulatory function are similar. With a blockade of melatonin receptors, an appearance of premature signs of aging of the reproductive function in rats was observed. It was manifested by an increased duration of the ovulatory cycle; a decrease in the number of regular cycles; the emergence of irregular cycles; a decrease in the number of short estrous cycles and an increase of long cycles; and the early development of persistent estrus.


rats luzindole estrous cycle aging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2008, vol. 1.Google Scholar
  2. 2.
    Anisimov, V.N., Ailamazyan, E.K., and Baturin, D.A., Light regime,anovulation,and the risk of malignant neoplasms of the female reproductive system: relation mechanisms and prevention, Zh. Akush. Zhen. Bolezn., 2003, vol. 52, no. 2, pp. 47–57.Google Scholar
  3. 3.
    Anisimov, V.N., Baturin, D.A., and Ailamazyan, E.K., Epiphysis, light, and breast cancer, Vopr. Onkol., 2002, vol. 48, nos. 4–5, pp. 524–535.Google Scholar
  4. 4.
    Baturin, D.A., Alimova, I.N., Popovich, I.G., et al., Effect of light deprivation on homeostasis, life expectancy, and spontaneous tumor development in HER-2/neu transgenic mice, Vopr. Onkol., 2004, vol. 50, no. 3, pp. 332–338.Google Scholar
  5. 5.
    Bespyatnykh, A.Yu., Brodskii, V.Ya., Burlakova, O.V., et al., Melatonin: teoriya i praktika (Melatonin: Theory and Practice), Moscow: Medpraktika, 2009.Google Scholar
  6. 6.
    Vinogradova, I.A., Bukalev, A.V., Zabezhinskii, M.A., et al., Influence of light regime and melatonin on the homeostasis,life time,and development of spontaneous tumors in female rats, Usp. Gerontol., 2007, vol. 20, no. 4, pp. 40–47.Google Scholar
  7. 7.
    Vinogradova, I.A. and Chernova, I.V., Influence of light regime on age dynamics of estrous function and prolactin level in rat blood serum, Usp. Gerontol., 2006, no. 19, pp. 60–65.Google Scholar
  8. 8.
    Vinogradova, I.A. and Chernova, I.V., Light regimes and ovulatory function of rats in ontogenesis, Ross. Fiziol. Zh. im. I.M. Sechenova, 2007, vol. 93, no. 1, pp. 90–98.PubMedGoogle Scholar
  9. 9.
    Gaidin, I.V., Baranova, Yu.P., and Vinogradova, I.A., Influence of day length in Karelia on the estrous function in female rats, Uch. Zap. Petrozavod. Gos. Univ., 2011, no. 6 (119), pp. 45–49.Google Scholar
  10. 10.
    Di’lman, V.M., Chetyre modeli meditsiny (Four Models of Medicine), Leningrad: Nauka, 1987.Google Scholar
  11. 11.
    Zaitsev, V.M., Liflyandskii, V.G., and Marinkin, V.I., Prikladnaya meditsinskaya statistika (Applied Medical Statistic Data Analysis), St. Petersburg: Foliant, 2006.Google Scholar
  12. 12.
    Kabak, Ya.M., Praktikum po andokrinologii. Osnovnye metodiki eksperimental’no-endokrinologicheskikh issledovanii (Practical Manual on Endocrinology: Main Experimental Endocrinological Methods), Moscow: Mosk. Gos. Univ., 1968.Google Scholar
  13. 13.
    Klochkov, D.V. and Belyaev, D.K., The effect of constant illumination on the reproductive function of rats, Ontogenez, 1977, vol. 8, no. 5, pp. 487–496.PubMedGoogle Scholar
  14. 14.
    Melatonin: perspektivy primeneniya v klinike (Prospective Implementation of Melatonin in Clinical Practice), Rapoport, S.I., Ed., Moscow: IMA-Press, 2012.Google Scholar
  15. 15.
    Rukovodstvo po laboratornym zhivotnym i al’ternativnym modelyam v biomeditsinskikh issledovaniyakh (Manual for Laboratory Animals and Alternative Models in Biomedical Studies), Karkishchenko, N.N. and Grachev, S.V., Eds., Moscow: Profil’, 2010.Google Scholar
  16. 16.
    Eticheskaya ekspertiza biomeditsinskikh issledovanii. Prakticheskie rekomendatsii (Ethical Expertise of Biomedical Studies: Practical Recommendations), Belousov, Yu.B., Ed., Moscow: Ross. O-vo Klin. Issled., 2005.Google Scholar
  17. 17.
    Beyer, C.E., Steketee, J.D., and Saphier, D., Antioxidant properties of melatonin—an emerging mystery, Biochem. Pharmacol., 1998, vol. 56, pp. 1265–1272.CrossRefPubMedGoogle Scholar
  18. 18.
    Brzozowska, I., Ptak-Belowska, A., Pawlik, M., et al., Mucosal strengthening activity of central and peripheral melatonin in the mechanism of gastric defense, J. Physiol. Pharmacol., 2009, vol. 60, suppl. 7, pp. 47–56.PubMedGoogle Scholar
  19. 19.
    Drazen, D.L., Bilu, D., Bilbo, S.D., et al., Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist, Am. J. Physiol. Regul., Integr. Comp. Physiol., 2001, vol. 280, no. 5, pp. 1476–1482.Google Scholar
  20. 20.
    Drobnik, J., Owczarek, K., Piera, L., et al., Melatonininduced augmentation of collagen deposition in cultures of fibroblasts and myofibroblasts is blocked by luzindole—a melatonin membrane receptors inhibitor, Pharmcol. Rep., 2013, vol. 65, no. 3, pp. 642–649.CrossRefGoogle Scholar
  21. 21.
    Dubocovich, M.L, Yun, K., Al-Ghoul, W.M., et al., Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms, FASEB J., 1998, vol. 12, no. 12, pp. 1211–1220.PubMedGoogle Scholar
  22. 22.
    Juszczak, M., Roszczyk, M., Kowalczyk, E., and Stempniak, B., The influence of melatonin receptors antagonists, luzindole and 4-phenyl-2-propionamidotetralin (4-P-P-PDOT),on melatonindependent vasopressin and adrenocorticotropic hormone (ACTH) release from the rat hypothalamo-hypophysial system, J. Physiol. Pharmacol., 2014, vol. 65, no. 6, pp. 777–784.Google Scholar
  23. 23.
    Negrev, N., Nyagolov, Yu., Zarkova, A., et al., Effects of melatonin and luzindole on plasma levels of tissue factor,tissue factor pathway inhibitor and von Willebrand factor in rats, Scr. Sci. Med., 2015, vol. 47, no. 1, pp. 64–69.Google Scholar
  24. 24.
    Prata Lima, M.F., Baracat, E.C., and Simones, M.J., Effects of melatonin on the ovarian response to pinealectomy or continuous light in female rats: similarity with polycystic ovary syndrome, Braz. J. Med. Biol. Res., 2004, vol. 37, pp. 987–995.CrossRefPubMedGoogle Scholar
  25. 25.
    Shieh, J.M., Wu, H.T., and Cheng, K.C., Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-Gsk3-beta pathway in hepatic cells, J. Pineal Res., 2009, vol. 47, pp. 339–344.CrossRefPubMedGoogle Scholar
  26. 26.
    Soares, J.M., Masana, M.I., Ersahin, C., and Dubocovich, M.L., Functional melatonin receptors in rat ovaries at various stages of the estrous cycle, J. Pharmacol. Exp. Ther., 2003, vol. 306, no. 2, pp. 694–702.CrossRefPubMedGoogle Scholar
  27. 27.
    Winczyk, K., Fuss-Chmielewska, J., Pawlikowski, M., et al., Luzindole but not 4-phenyl-2-propionamidotetralin (4P-PDOT) diminishes the inhibitory effect of melatonin on murine Colon 38 cancer growth in vitro, Neuroendocr. Lett., 2009, vol. 30, pp. 657–662.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. V. Zhukova
    • 1
  • E. S. Obukhova
    • 1
  • E. A. Khizhkin
    • 2
  • V. A. Ilukha
    • 1
    • 2
  • I. A. Vinogradova
    • 1
  1. 1.Petrozavodsk State UniversityPetrozavodskRussia
  2. 2.Institute of Biology, Karelian Scientific CenterRussian Academy of SciencesPetrozavodsk, KareliaRussia

Personalised recommendations