Advertisement

Advances in Gerontology

, Volume 6, Issue 3, pp 204–211 | Cite as

Comparison of morphofunctional features of the ventral hippocampus in adult and old rats after combined stress

  • M. R. Ekova
  • A. V. Smirnov
  • M. V. Shmidt
  • I. N. Tyurenkov
  • E. V. Volotova
  • D. V. Kurkin
  • N. V. Grigorieva
  • V. V. Ermilov
  • D. S. Mednikov
Article

Abstract

Animals were exposed to 7 days of combined stress in a special device consisting of six isolated compartments of similar volumes. During the 30-min exposure, the stressors of various modalities, including pulse lighting, heavy sound, and vibration, were presented and stochastically changed every 5 min. This treatment was coincided with restraint and elevated temperature in the compartments. We observed more severe dystrophic lesion and highly expressed inducible nitric oxide synthase in neurons of the pyramidal layer of the CA3 field, signs of impaired blood flow, perivascular edema, and decreased expression of endothelial nitric oxide synthase in endothelial cells of the microvasculature, and lower expression of serine racemase in neuropil of the radial layer of the CA1 field in the ventral hippocampi after the exposure of 24-month-old rats to combined stress as compared to adult 12-month-old rats.

Keywords

hippocampus stress aging iNOS eNOS serine racemase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volotova, E.V., Kurkin, D.V., Bakulin, D.A., et al., The effect of phenibut on memory and behavior of different-age rats affected by 7-day combined stress, Vestn. Volgograd. Gos. Med. Univ., 2014, no. 1, pp. 23–25.Google Scholar
  2. 2.
    Gudoshnikov, V.I., Role of glucocorticoids in aging and age-dependent pharmacological therapy, Usp. Gerontol., 2011, vol. 24, no. 1, pp. 48–53.Google Scholar
  3. 3.
    Malyshev, I.Yu. and Manukhina, E.B., Stress-limiting system of nitrogen oxide, Ross. Fiziol. Zh. im. I.M. Sechenova, 2000, no. 10, pp. 1283–1292.Google Scholar
  4. 4.
    Smirnov, A.V., Tyurenkov, I.N., Shmidt, M.V., et al., Morphological changes of hypocamp of old rates caused by stress, Vestn. Volgograd. Gos. Med. Univ., 2013, no. 2, pp. 14–17.Google Scholar
  5. 5.
    Khovryakov, A.V., Podrezova, E.P., Kruglyakov, P.P., et al., Role of NO-synthase system in reactions of brain on stress, Morfologiya, 2009, vol. 135, no. 2, pp. 7–11.Google Scholar
  6. 6.
    Austin, S.A., Santhanam, A.V., and Katusic, Z.S., Endothelial nitric oxide modulates expression and processing of amyloid precursor protein, Circ. Res., 2010, vol. 107, pp. 1498–1502.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Calabrese, V., Boyd-Kimball, D., Scapagnini, G., and Butterfield, D.A., Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes, In Vivo, 2004, vol. 18, pp. 245–268.PubMedGoogle Scholar
  8. 8.
    De Kloet, E.R., Vreugdenhil, E., Oitzl, M.S., and Joëls, M., Brain corticosteroid receptor balance in health and disease, Endocrinol. Rev., 1998, vol. 19, no. 3, pp. 269–301.Google Scholar
  9. 9.
    Doherty, G.H., Nitric oxide in neurodegeneration: potential benefits of non-steroidal anti-inflammatories, Neurosci. Bull., 2011, vol. 27, pp. 366–382.CrossRefPubMedGoogle Scholar
  10. 10.
    Esposito, S., Pristera, A., and Maresca, G., Contribution of serine racemase/D-serine pathway to neuronal apoptosis, Aging Cell, 2012, vol. 11, pp. 588–598.CrossRefPubMedGoogle Scholar
  11. 11.
    Freund, T.F. and Buzsa’ki, G., Interneurons of the hippocampus, Hippocampus, 1996, vol. 6, no. 4, pp. 347–470.CrossRefPubMedGoogle Scholar
  12. 12.
    Frodl, T. and Amico, F., Is there an association between peripheral immune markers and structural functional neuroimaging findings? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, vol. 48, pp. 295–303.CrossRefPubMedGoogle Scholar
  13. 13.
    Ghosh, S., Laxmi, T.R., and Chattarji, S., Functional connectivity from the amygdala to the hippocampus grows stronger after stress, J. Neurosci., 2013, vol. 33, pp. 7234–7244.CrossRefPubMedGoogle Scholar
  14. 14.
    Guix, E.X., Uribersalgo, I., Coma, M., and Munoz, F.J., The physiology and pathophysiology of nitric oxide in the brain, Prog. Neurobiol., 2015, vol. 76, pp. 126–152.CrossRefGoogle Scholar
  15. 15.
    Katusic, Z.S. and Austin, S.A., Endothelial nitric oxide: protector of a healthy mind, Eur. Heart J., 2014, vol. 35, pp. 888–894.CrossRefPubMedGoogle Scholar
  16. 16.
    Leza, J.C., Salas, E., Sawicki, G., et al., The effects of stress on homeostasis in JCR-LA-cp rats: the role of nitric oxide, J. Pharmacol. Exp. Ther., 1998, vol. 286, pp. 1397–1403.PubMedGoogle Scholar
  17. 17.
    Miya, K., Inoue, R., Takata, Y., et al., Serine racemase is predominantly localized in neurons in mouse brain, J. Comp. Neurol., 2008, vol. 510, no. 6, pp. 641–654.CrossRefPubMedGoogle Scholar
  18. 18.
    Mustafa, A.K., van Rossum, D.B., Patterson, R.L., et al., Glutamatergic regulation of serine racemase via reversal of PIP2 inhibition, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 2921–2926.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mustafa, A.K., Kumar, M., Selvakumar, B., et al., Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of D-serine formation, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 2950–2955.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Parihar, M.S., Parihar, A., Villamena, F.A., et al., Inactivation of mitochondrial respiratory chain complex I leads mitochondrial nitric oxide synthase to become pro-oxidative, Biochem. Biophys. Res. Commun., 2008, vol. 367, no. 4, pp. 761–767.CrossRefPubMedGoogle Scholar
  21. 21.
    Rosenberg, D., Kartvelishvily, E., Shleper, M., et al., Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentration, FASEB J., 2010, vol. 24, pp. 2951–2961.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Smith, M.A., Mack, V., Ebneth, A., et al., The structure of mammalian serine racemase: Evidence for conformational changes upon inhibitor bindings, J. Biol. Chem., 2010, vol. 285, no. 17, pp. 12873–12881.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Turpin, F.R., Potier, B., Dulong, J.R., et al., Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function, Neurobiol. Aging, 2011, vol. 32, pp. 1495–1504.CrossRefPubMedGoogle Scholar
  24. 24.
    Wei, Q., Hebda-Bauer, E.K., Pletsch, A., et al., Overexpressing the glucocorticoid receptor in forebrain causes an aging-like neuroendocrine phenotype and mild cognitive dysfunction, J. Neurosci., 2007, vol. 33, no. 27, pp. 8836–8844.CrossRefGoogle Scholar
  25. 25.
    Whitehead, G., Jo, J., Hogg, E.L., et al., Acute stress causes rapid synaptic insertion of Ca2+-permeable AMPA receptors to facilitate long-term potentiation in the hippocampus, Brain, 2013, vol. 136, no. 12, pp. 3753–3765.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wolosker, H., NMDA receptor regulation by d-serine: new findings and perspectives, Mol. Neurobiol., 2007, vol. 36, pp. 152–164.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. R. Ekova
    • 1
  • A. V. Smirnov
    • 1
    • 2
  • M. V. Shmidt
    • 1
    • 2
  • I. N. Tyurenkov
    • 1
  • E. V. Volotova
    • 1
  • D. V. Kurkin
    • 1
  • N. V. Grigorieva
    • 1
  • V. V. Ermilov
    • 1
  • D. S. Mednikov
    • 1
  1. 1.Volgograd State Medical UniversityVolgogradRussia
  2. 2.Volgograd Medical Scientific CenterVolgogradRussia

Personalised recommendations